Разработка грунта землеройно-транспортными машинами — бульдозерами, скреперами, грейдерами
К землеройно-транспортным машинам относят погрузчики, скреперы, бульдозеры, грейдеры, грейдер-элеваторы.
Бульдозеры и скреперы за один цикл разрабатывают грунт, перемещают его, разгружают в насыпь и возвращаются в забой порожняком. Стоимость работ, выполняемых этими машинами, в 3-4 раза меньше стоимости работ, выполняемых одноковшовыми экскаваторами.
Скреперы – наиболее высокопроизводительные землеройнотранспортные машины. Эксплуатационные возможности позволяют использовать их при отрывании котлованов и планировке поверхностей. В настоящее время применяют прицепные (с объемом ковша 3; 7 и 8 м 3 ), полуприцепные (с объемом ковша 4,5 м3) и самоходные (с объемом ковша 8; 15 и 25 м3) скреперы (рис.6.15). Прицепные и полуприцепные скреперы наиболее эффективно применять при транспортировании грунта на расстояние от 100 м до 1000 м, а самоходные — от 300 м до 3000 м.
Скреперы подразделяют на прицепные, полуприцепные, самоходные Главный параметр – вместимость ковша, м. Основные технологические параметры: грузоподъемность, ширина и глубина резания, толщина отсыпаемого слоя. В настоящее время в строительстве применяют скреперы с вместимостью ковша 3…15 м3. В мировой практике производства земляных работ используют скреперы, имеющие вместимость ковша до 60 м.
Ширина резания скреперов с вместимостью ковша 4…25 м колеблется в пределах 2200…2800 мм. Максимальная глубина резания для этих машин составляет 250…400 мм. Для более точного выполнения процессов планировки грунта и разработки грунта в земляных сооружениях типа «планировочная площадь» может применяться система автоматического управления положением ковша скрепера в зависимости от рельефа местности.
Рабочий орган скрепера – ковш с ножевым устройством, который осуществляет послойное резание грунта с одновременным набором его в ковш. Переход в транспортное состояние осуществляется подъемом ковша с одновременным его закрытием.
Выгрузка производится в процессе движения скрепера послойно путем наклона ковша скрепера или перемещения задней стенки ковша – свободной или принудительной разгрузкой. Скрепер снимает ковшом стружку грунта толщиной 0,12… 0,35 м и шириной 1,65… 2,75 м (для скреперов с объемом ковша 3… 8 м3). Наибольшая толщина отсыпаемого слоя 0,35… 0,5 м.
Классификация скреперов:
При помощи скрепера могут быть механизированы следующие процессы производства земляных работ: разработка и укладка грунта в земляные сооружения различных типов; перемещение грунта на расстояние от 100 до 5000 м; снятие и перемещение растительного слоя; послойное разравнивание грунта.
Рис. 1 — Самоходный скрепер МоАЗ-6014
Самоходный скрепер МоАЗ-6014
Грузоподъемность, т — 16
Масса скрепера самоходного полная, т — 36
Максимальная скорость снаряженного скрепера, км/ч — 44
Максимальная толщина слоя отсыпки, м — 0,45
Ширина резания, м — 2,82
Работа скрепера осуществляется по следующей схеме: набор грунта ковшом скрепера, перемещение нагруженного скрепера в насыпь, разгрузка ковша с разравниванием и частичным уплотнением, возвращение порожним ходом к выемке и повторение цикла.
В зависимости от характера возводимого сооружения, взаимного расположения мест разработки и укладки грунта и от местных условий применяют следующие траектории движения скреперов: эллиптическую, спиральную, «восьмеркой», зигзагообразную, челночно-поперечную и челночно-продольную (рис. 2).
Рис. 2 — Схемы движения скреперов: а) эллипс; б) спираль; в) «восьмерка»; г) «зигзаг»; д) челночно-поперечная; е) челночно-продольная
Эллиптическая схема наиболее проста и применяется в большинстве случаев при планировочных работах в промышленном и гражданском строительстве. Наибольший эффект имеет при возведении насыпей или разработке выемок на линейно-протяженном строительстве с высотой насыпи или глубиной выемок не более 2 м, когда не требуется устройства выездов или съездов.
Спиральная (кольцевая) схема является разновидностью эллиптической, она наиболее подходит при возведении широких насыпей высотой 2…2,5 м из двухсторонних резервов или при разработке широких выемок глубиной до 2,6 м. Схему часто применяют для устройства насыпей шириной, равной или большей длины пути разгрузки ковша. При этом не требуются съезды и выезды с площадки, основное движение скреперов перпендикулярно оси возводимого сооружения, уменьшается дальность транспортировки, повышается производительность.
Движение скрепера по «восьмерке» применяют при тех же условиях, что и эллиптическую схему. Отличием является то, что скрепер при своем движении по «восьмерке» чередует правые и левые повороты, что улучшает технико-эксплуатационные показатели и почти вдвое сокращает время на повороты, повышая тем самым на 3…5 % производительность скрепера.
Зигзаг используют при возведении протяженных насыпей (дорог, плотин) высотой до 6 м из рядом расположенных выемок при протяженности рабочих участков не менее 200 м. При этой схеме уменьшается число поворотов, сокращается продолжительность одного цикла, возрастает производительность по сравнению с эллиптической схемой на 15…20 %.
Челночно-поперечная схема применяется при возведении насыпей из двухсторонних выемок, а также при разработке выемок на глубину до 1,5 м с перемещением грунта в двусторонние отвалы. Набор грунта осуществляется перпендикулярно оси выемки при движении скрепера как в одну, так и в другую сторону. Схема сокращает число поворотов скрепера, длину пути груженого и порожнего хода. По сравнению с эллиптической схемой производительность скрепера выше на 20…25 %.
Челночно-продольную схему движения скреперов применяют при возведении насыпей до 5…6 м, с заложением откосов не круче 1:2, с транспортировкой грунта из двусторонних резервов. При этой схеме холостой пробег сокращается до минимума.
При вертикальной планировке площадей рекомендуются эллиптическая, спиральная и челночно-поперечная схемы движения скреперов.
Тяжелые грунты, а также грунты с примесями, разработка которых затруднена, предварительно рыхлят на толщину срезаемой стружки. Для этого применяют рыхлители, являющиеся навесным или прицепным оборудованием к гусеничному трактору. Рыхлитель оборудован пятью стойками-ножами, а при рыхлении особо плотных грунтов – тремя (2-ю и 4-ю снимают).
Скрепер срезает ковшом стружку грунта толщиной 0,12…0,35 м и шириной (для разных типов машин 1,65…2,75 м). Наибольшая толщина отсыпаемого слоя 0,35…0,5 м. Для равномерной толщины отсыпаемого слоя грунта разгрузку осуществляют только в процессе движения скрепера. Скреперы заполняют ковш на пути длиной 12…20 м, длина пути разгрузки меньше и находится в пределах 9..15 м. Для увеличения толщины стружки, сокращения времени и более полного наполнения ковша грунтом применяют тракторы-толкачи (один толкач на 2…6 скреперов).
Применяют следующие схемы резания грунта скрепером в зависимости от вида и сцепления грунта:
Скреперы – мощные и устойчивые машины. В груженом состоянии они могут преодолевать подъем до 18 % и в порожнем – до 40 %; скрепер может спускаться под уклон до 45 %, двигаться при поперечном уклоне до 30 %.
Бульдозер – это землеройно-транспортная машина, разрабатывающая и транспортирующая грунт при помощи отвала с ножом. Бульдозер применяется для планировочных работ, разработки котлованов, траншей и т.д.
У некоторых бульдозеров отвал может поворачиваться под углом. Для уменьшения потерь грунта отвалы снабжаются открылками. К отвалу может крепиться и откосник для планировки откосов. Основные типы бульдозерных отвалов представлены на рис. 3:
Рис. 3 — Основные типы бульдозерных отвалов: 1 — прямой поворотный; 2 — прямой неповоротный; 3 — полусферический; 4 — сферический; 5 – сферический для сыпучих материалов; 6 — с толкающей плитой
Рис. 4 — Бульдозер Б14 производства ЧТЗ с полусферическим отвалом
Рис. 5 — Бульдозер Б10ПМ производства ЧТЗ
Основные параметры бульдозера Б14 и навесного оборудования (рис. 4):
Бульдозерное оборудование с полусферическим отвалом (Е) – 1 цифра
Бульдозерное оборудование с прямым отвалом (В) – 2 цифра
Ширина отвала А, мм 3730 3700
Высота отвала В, мм 1500 1345
Объем призмы волочения, куб.м. 7,5 4,75
Максимальное заглубление N, мм 550 520
Трехзубый рыхлитель (Р) Однозубый рыхлитель (Н) Максимальное заглубление Н, мм 500 650
Масса эксплуатационная, кг: трактора с бульдозерно-рыхлительным оборудованием 24520 23630
Цикл работы бульдозера состоит из операций:
Разравнивают грунт передним и задним ходом машины. Вырезаемый из забоя грунт накапливается перед отвалом, формируя призму грунта, которую называют призмой волочения.
Применение бульдозеров для планировочных работ целесообразно при перемещении грунта на расстояние до 100 м. При большей дальности транспортирования бульдозеры становятся неэффективными, так как в процессе перемещения большая часть грунта теряется. Потери, зависящие от дальности перемещения, могут доходить до 30 % и более от объема призмы волочения. Экономически целесообразная дальность перемещения грунта не превышает 60–80 м для гусеничных и 100–140 м для пневмоколесных машин.
При дальности перемещения до 50 м бульдозеры разрабатывают и перемещают грунт без промежуточного вала. Из выемки в насыпь грунт перемещается за один приём. При необходимости перемещения грунта на расстояние более 50 м через каждые 20…25 м устраиваются промежуточные валы, что уменьшает потери грунта.
При планировке площадок могут быть использованы два основных способа работ – траншейный и послойный (рис. 6).
Рис. 6 — Схема резания и перемещения грунта бульдозером: а) продольная при резании под уклон; б) то же, при горизонтальном участке; в) то же, траншейным способом; г) то же, послойным способом; 1 – участок резания; 2 – то же, при перемещении; 3 – то же, разгрузки; 4 – насыпь; 5 – выемка
При траншейном способе выемку разбивают на ярусы высотой 0,4…0,5 м. Каждый участок на ширину отвала бульдозера разрабатывают за 2…3 проходки по нему. Между соседними участками оставляют полосу неразработанного грунта шириной до 0,6 м. Этот грунт служит стенками траншеи при их разработке, способствуя более полному заполнению отвала. Эти полосы разрабатывают в последнюю очередь перед окончательной планировкой площадки. Данный способ исключает значительные потери грунта при его перемещении и поэтому более производителен.
При послойном способе выемку разрабатывают слоями на толщину снимаемой стружки за один проход бульдозера последовательно по всей ширине выемки или отдельным его частям. Этот способ используют при сложном очертании площадок и при небольшой глубине срезки.
Отсыпка грунта в насыпь начинается с наиболее удаленных участков послойно с одновременным уплотнением или грудами без уплотнения. Возвращение в забой происходит обычно задним ходом без разворота с опущенным отвалом, что способствует разравниванию и промежуточному уплотнению грунта. Особо плотные грунты перед разработкой их бульдозерами следует рыхлить. При этом используют рыхлительное оборудование в виде одного, двух или трех зубьев-рыхлителей, которым оснащается бульдозер (рис. 5).
Автогрейдеры – универсальные высокопроизводительные машины, применяются для профилирования грунтовых дорог, планировки и отделки земляного полотна, устройства водоотводных канав, возведения невысоких насыпей из резервов, планировки территории с перемещением грунта до 25 м (рис. 7). Все операции, выполняемые автогрейдером, делятся на три вида: зарезание грунта ножом отвала; перемещение и отделка поверхности, включая планировку; разравнивание грунта и срез откосов.
Рис. 7 — Автогрейдер Амкодор rd-165h с системой нивелирования
Возведение невысоких дорожных насыпей из боковых резервов начинают с пробивки ножом автогрейдера первой борозды по линии контура подошвы насыпи, которая заранее обозначается колышками и вехами. После этого автогрейдер начинает срезать грунт в резерве от внутренней бровки и укладывать его насыпь.
Автогрейдер позволяет разрабатывать канавы глубиной до 1,1 м и шириной по дну 0,4…1 м.
Грейдер-элеватор используют для возведения насыпей не выше 1,1 м, для устройства канав не глубже 1 м, на планировке, иногда для погрузки грунта в транспортные средства. Грейдер-элеватор может работать на местности с поперечным уклоном не более 18° и преимущественно в связных грунтах естественной влажности; тяжёлые грунты необходимо рыхлить. Грунты, содержащие гальку, крупные корни, камни и валуны, разрабатывать грейдер-элеваторами нельзя. В зависимости от грунта режущий диск грейдер-элеватора устанавливают под соответствующими углами захвата и резания. При последовательных круговых движениях грейдер-элеватора грунт из выемки перемещается в насыпь транспортёром (рис. 8).
Рис. 8 — Грейдер-элеватор
Толщина слоя, снимаемого за один проход, зависит от группы грунта, диаметра диска и составляет 0,1…0,5 м. Транспортёр, расположенный наклонно к направлению движения, перемещает грунт по горизонтали до 9 м и не выше 3 м.
Широкие насыпи можно делать грейдер-элеваторами совместно с автогрейдерами. Отсыпку насыпи на высоту до 0,8 м производит грейдерэлеватор, а на большую высоту – автогрейдер, передвигающий вдоль насыпи валики грунта, отсыпаемые грейдер-элеватором, и профилирующий их на насыпи.
КРАТКИЙ КУРС ЛЕКЦИЙ ПО ЗЕМЛЕРОЙНЫМ МАШИНАМ
Лекция №1. Машины для земляных работ. Экскаваторы одноковшовые.
Любой строительный процесс начинается с производства земляных работ, т. с. разработки грунта, перемещению его или погрузки на транспортные средства. Так, для устройства оснований или фундаментов любого здания или сооружения отрывают котлованы необходимых размеров и глубины, а для прокладки наружных сетей трубопроводов — траншеи. Иногда, для устройства таких сооружений, как плотины, дамбы или дороги, устраивают насыпи, причем с укаткой грунта. Все они по существу являются земляными сооружениями, которые по продолжительности службы могут быть временными и постоянными. Временные (котлованы, траншеи) устраиваются только на период строительства зданий, сооружений, сетей трубопроводов, а затем засыпаются грунтом, а постоянные (плотины, дамбы, каналы) рассчитаны на продолжительный срок эксплуатации.
Земляные работы по своему удельному весу в общих объемах строительных работ являются наиболее массовыми и трудоемкими, и поэтому с ними справиться ручными способами не представляется возможным. При их выполнении крайне необходимы механизированные способы работ путем применения специальных машин.
Машины для земляных работ по назначению разделяют на:
Бульдозеры предназначены для разработки и перемещения грунта на расстояние до 100 м, возведения насыпей высотой до 2 м, разработки выемок, засыпки траншей после укладки коммуникаций, планировки строительных площадок, очистки дорог и трасс (корчевка пней, валка деревьев, срезка растительного слоя и т.п.), планировки откосов. На базе бульдозеров применяют рыхлители, имеющие навесные или прицепные рабочие органы в виде зуба или нескольких зубьев для послойного разрушения и рыхления тяжелых и мерзлых грунтов глубиной до 1,5 м.
3.специальные, предназначенные для уплотнения грунтов (катки, трамбовки, виброуплотнители)
Ведь, как известно, долговечность земляных сооружений в большей мере зависит от качества уплотнения грунтов, которое выполняется при планировочных работах, возведении насыпей, обратных засыпках траншей и фундаментов. С целью получения наибольшей плотности уложенного грунта, наименьшей фильтрационной способности и уменьшения последующих осадок грунт укладывают и уплотняют с соблюдением определенных технологических требований.
Для уплотнения грунтов в зависимости от физико-механических свойств могут быть использованы два вида уплотняющих воздействий статическое и динамическое.
Машины статического действия предназначены для послойного уплотнения грунта под действием собственного веса. К ним относятся:
Машины динамического действия предназначены для послойного уплотнения грунта под действием возникающей силы или массы падающего груза. К ним относятся:
4. для свайных работ (вибропогружатели, дизель-молоты).
Наиболее распространенным видом землеройных машин являются одноковшовые строительные экскаваторы. Они служат для разработки грунта и перемещения его в отвал или для погрузки в транспортные средства. Разрабатывают они грунты I…IV групп и разрыхленные мерзлые или скальные грунты. Кроме того, экскаваторы применяют на сваебойных, погрузочно-разгрузочных, монтажных и других работах, используя различные виды сменного рабочего оборудования.
Одноковшовые экскаваторы классифицируют по назначению, конструкции ходового устройства, виду и подвеске рабочего оборудования, типу рабочих органов и другим признакам.
У одноковшовых экскаваторов могут быть различные типы ходового устройства: гусеничное, пневмоколесное, шагающее, рельсового типа, специальное и комбинированное. Для строительных экскаваторов наиболее характерным является гусеничное и пневмоколесное ходовое устройство.
Ходовое устройство гусеничного типа, предназначено для передвижения экскаватора в пределах строительной площадки. Оно состоит из рамы и соединенных с ней двух гусеничных тележек. При передислокации с объекта на объект гусеничные экскаваторы перевозят на специальном прицепе при помощи автотягача.
Пневмоколесное ходовое оборудование обеспечивает большую мобильность: при передислокации с объекта на объект экскаватор может перемещаться своим ходом или на жесткой сцепке за тягачом (при этом должен быть отключен привод ведущих колес и гидроцилиндр управления поворотом передних колес). Поскольку жесткость пневмоколесного ходового оборудования невысока, при работе обязательно нужно использовать выносные опоры для разгрузки колеси увеличения опорного контура.
По назначению одноковшовые экскаваторы подразделяют на универсальные и специальные.
Универсальные экскаваторы оснащены несколькими видами сменного рабочего оборудования, а специальные оснащены только одним видом такого оборудования.
Сменное рабочее оборудование одноковшовых экскаваторов предназначено для выполнения различных земляных работ. Прямая лопата служит для разработки грунта, расположенного выше уровня стоянки экскаватора, в процессе копания ковш движется вверх от экскаватора.
Рис.1. Гидравлический экскаватор с прямой лопатой
Основными элементами рабочего оборудования являются стрела 6, рукоять 7, ковш 10 и гидроцилиндры: подъема стрелы 5, поворота рукояти 9 и поворота ковша 8. На экскаваторе могут устанавливаться как поворотные, так и неповоротные ковши. Поворотные значительно расширяют возможности экскаватора, обеспечивая помимо разработки грунта планировку забоя. В случае установки неповоротного ковша гидроцилиндр 8 служит для открывания днища ковша при выгрузке грунта.
Обратная лопата (рис. 2) служит для разработки грунта, находящегося ниже уровня стоянки, при этом ковш движется вверх в сторону экскаватора.
При работе обратной лопатой реализуются большие усилия копания, так как отпор грунта воспринимается не только массой рабочего оборудования, но и массой всей машины. Кроме того, улучшена наполняемость ковша и точность выгрузки за счет поворота его относительно рукояти, возможно применение широкого спектра удлиненных стрел и рукоятей и профильных ковшей для очистки кюветов, каналов и т.д.
По конструктивному исполнению обратную лопату с гидроприводом выпускают нескольких разновидностей, но основными ее сборочными элементами (рис.2) является моноблочная (Г образная) или составная стрела 6, рукоять 8, ковш 10 обратной лопаты и гидроцилиндры 11, 7, 9 подъема стрелы, поворота рукояти и ковша.
Рис.2. Экскаватор гидравлический с обратной лопатой
Стрела обратной лопаты сварена из листовой легированной стали. Она шарнирно закреплена в проушинах поворотной платформы, к которой присоединены также гидроцилиндры 11 подъема стрелы. Штоки гидроцилиндров шарнирно соединены со стрелой, при выдвижении штоков изменяется угол наклона стрелы по отношению к платформе.
Рукоять шарнирно подвешена в головной части стрелы. В ее задней части шарнирно закреплен шток гидроцилиндра 7 поворота рукояти. С другой стороны гидроцилиндр связан со стрелой. Выдвижение или втягивание штока гидроцилиндра обеспечивает поворот рукояти относительно стрелы по часовой или против часовой стрелки. В передней части рукояти шарнирно установлен ковш 10, который свободно может поворачиваться при помощи гидроцилиндра, 9. Для увеличения угла поворота ковша гидроцилиндр связан с ним специальным шарнирным многозвенником.
Обратную лопату снабжают сменными ковшами различной формы и вместимости. Ковши обратной лопаты чаще всего изготавливают сварной конструкции без открывающегося днища. Верхний пояс ковша имеет усиление. В районе режущей кромки передней стенки приварены карманы для установки зубьев, количество которых зависит от ширины ковша и вида работ, для которых они предназначены. Нередко зубья устанавливают и на боковых стенках, преимущественно при разработке грунта в траншеях. Эти зубья подрезают стенки траншеи, исключая заклинивание в ней ковша. Передняя стенка в нижней части имеет перфорацию для удаления воды при разработке переувлажненных грунтов.
При установке на экскаваторах составной стрелы основная и удлиняющая ее части соединяются между собой шарнирно, но для исключения их поворота друг относительно друга между ними устанавливают дополнительную тягу. Тяга имеет несколько фиксированных положений, что позволяет при необходимости изменять угол между основной в удлиняющей частями стрелы.
Разрабатывают грунт поворотом рукояти относительно стрелы или поворотом ковша относительно рукояти.
Обратная лопата экскаватора с механическим (канатным) приводом (рис.3) несколько отличается от обратной лопаты экскаватора с гидравлическим приводом.
Рис.3. Гусеничный экскаватор 3-й размерной группы с механическим приводом и рабочим оборудованием «обратная лопата»
Ковш 9 (рис.3) к рукояти 7 крепится неподвижно, что достигается установкой реактивных тяг 8 между задней стенкой ковша и рукоятью. Рабочие движения ковша обеспечиваются изменением длин тягового 10 и подъемного 6 полиспастов.
Драглайн (рис.4) предназначен для разработки грунтов преимущественно ниже уровня стоянки экскаватора. Благодаря удлиненной решетчатой стреле драглайн может работать на большом радиусе копания, поэтому он применяется при отрывке больших котлованов, рытье каналов в ирригационном строительстве и выполнении погрузо-разгрузочных работ на сыпучих материалах. Это единственный вид рабочего оборудования, который монтируется исключительно на экскаваторах с механическим приводом.
Рис.4. Схема драглайна
Рабочее оборудование включает стрелу решетчатого типа, ковш драглайна 8, тяговый 9 и подъемный 7 канаты. Подъемный канат огибает головной блок 6 стрелы и навивается на барабан подъемной лебедки. Тяговый канат направляется роликовым устройством (наводкой) 1 и навивается на барабан тяговой лебедки. Ковш подвешен к тяговому и подъемному канатам при помощи цепей, причем между ветвями подъемных цепей установлена распорка, обеспечивающая свободное перемещение ковша при разгрузке. Для того чтобы ковш разгрузить, его опрокидывают, ослабляя разгрузочный канат.
Грейфер (рис.5) применяют для отрывки котлованов, траншей, колодцев и выполнения погрузо-разгрузочных работ. Грейферы, используемые на экскаваторах с гидравлическим приводом, имеют жесткую подвеску. Это позволяет создавать необходимые усилия напора при врезании и эффективно разрабатывать плотные грунты.
Рис.5. Рабочее оборудование грейфера
Для навески грейфера используют базовую 1 и головную часть 4 стрелы, связанные тягой 2, и рукоять 5 обратной лопаты. Ковш грейфера состоит из двух челюстей 10 с зубьями 11 и двух тяг 9. В механизм подвески ковша входит рама 7, поворотная головка 6, гидроцилиндр расположенный внутри рамы, и ползун 8. Ширина челюстей ковша зависит от условий использования. Грейферный ковш в зависимости от условий поворота в плане может крепиться к рукояти тремя способами: неповоротным, неполноповоротным и полноповоротным. При любом виде соединения ковш может раскачиваться в продольном и поперечном направлениях.
При отрывке глубоких (до 30 м) колодцев применяют грейферное оборудование на напорной штанге, разработанное для экскаваторов 5-й и 6-й размерных групп.
При оборудовании грейфером экскаватора с механическим приводом на нем монтируют удлиненную решетчатую стрелу (рис.6). Челюсти ковша замыкают тяговым канатом, а высоту изменяют подъемным канатом.
Рис.6. Схема грейфера с механическим приводом
Недостаток грейферного оборудования с канатным управлением заключается в том, что плотность разрабатываемого грунта зависит от его массы, поэтому основная область их применения погрузо-разгрузочные работы на сыпучих материалах.
Рис. 7. Сменное рабочее оборудование одноковшовых экскаваторов:
а-прямая лопата; б-обратная лопата; в-драглайн, г — грейфер; д — копер для забивки свай; е — грузоподъемный кран; ж — струг; э — рыхлитель грунта
Дополнительно может монтироваться буровое, сваебойное, крановое и другие виды оборудования.
Рис. 8. Классификация экскаваторов по типу подвески рабочего оборудования:
Конструктивные особенности рабочих органов определяются их назначением. По основному назначению применяются рабочие органы ковшового, грейферного и рыхлительного типов, однако следует отметить, что экскаваторы, являясь наиболее универсальными из всех строительных машин, имеют более сорока видов сменного рабочего оборудования.
Все одноковшовые экскаваторы, за исключением неполноповоротных, независимо от вида рабочего оборудования и типа подвески имеют одинаковую структурную базу (рис.9), включающую поворотную платформу 5, силовую установку 2, опорно-поворотное устройство 6, ходовое устройство 8, противовес 1, кабину оператора 3, рабочее оборудование 4, 7 и механизмы передвижения и поворота.
Рис.9. Базовая часть одноковшового экскаватора и основные виды сменного рабочего оборудования
Выбор типа экскаваторов, его модели и вида рабочего оборудования производят исходя из грунтовых и климатических условий, объемов и сроков производства работ, параметров земляных сооружений, дальности транспортирования грунта и ряда других факторов.
Основными положениями при выборе экскаватора также являются: выбор рациональной схемы работы; выбор рациональных технологических параметров забоя; рациональное использование взаимодействующих машин (экскаваторов и самосвалов).
Вид рабочего оборудования уточняется в зависимости от характера работ (табл. 1.1).
Области применения сменного рабочего оборудования одноковшовых экскаваторов
Например, гусеничные экскаваторы рекомендуется применять на сосредоточенных объемах земляных работ, когда не требуются частые перебазировки; при работе на слабых грунтах; при разработке скальных грунтов, где пневматические шины быстро выходят из строя.
Пневмоколесные экскаваторы целесообразно применять на грунтах с высокой несущей способностью и на рассредоточенных объемах работ, а также в городских условиях, где требуется частая перебазировка машин собственным ходом.
Экскаваторы на специальном шасси автомобильного типа целесообразно применять на рассредоточенных работах (строительстве дорог, опор линий электропередачи, трубопроводов и т. п.).
Экскаваторы с навесным рабочим оборудованием на пневмоколесных тракторах целесообразно применять в условиях бездорожья и на рассредоточенных объектах.
Лекция №2. Многоковшовые (траншейные) экскаваторы. Бульдозеры.
Многоковшовые или как их еще называют траншейные экскаваторы – это землеройные машины, выполняющие все операции технологического цикла (разработку грунта, транспортировку его на поверхность и выгрузку в отвал или транспортное средство) одновременно.
Совместно с другими видами машин и вспомогательного оборудования экскаваторы непрерывного действия образуют технологические комплексы, предназначенные для выполнения различных видов работ при строительстве нефте- и газопроводов, оросительных и осушительных каналов, устройстве дренажных систем, закрытых напорных водоводов, добыче и переработке нерудных строительных материалов, строительстве подземных кабельных линий связи и электропередач, других коммуникаций.
Траншейные экскаваторы классифицируют по следующим основным признакам:
Рабочим органом цепных экскаваторов (рис 1.) является однорядная или двухрядная свободно провисающая бесконечная цепь 5, огибающая наклонную раму 7 и несущие на себе ковши или скребки 6.
Рис 1. Схема цепного траншейного экскаватора
Рабочим органом роторных экскаваторов (рис 2.) является жесткий ротор (колесо) 12 с ковшами или скребками 11,вращающийся на роликах 8 рамы 9.
Рис 2. Схема роторного траншейного экскаватора
Ширина отрываемых траншей прямоугольного профиля зависит от ширины ковша или скребка и расположения на них режущих элементов.
На один и тот же базовый тягач могут быть навешены сменные рабочие органы с различной шириной и количеством ковшей (скребков) для рытья траншей с различными параметрами профиля. Для получения трапецеидального профиля рабочие органы цепного и роторного траншейного экскаватора оборудуют активными и пассивными откосообразователями.
Активные откосообразователи двухцепных траншейных экскаваторов (рис 1,а) представляют собой наклонно расположенные цепи 8 с поперечными резцами, совершающие возвратно-поступательное движение.
Пассивные откосообразователи роторных машин выполнены в виде двух наклонных сменных ножей 13 (рис 2,а), жестко закрепленных по бокам рамы ротора. Откосообразователи применяют при работе в немерзлых грунтах с низкой несущей способностью.
Для разработки мерзлых грунтов цепные экскаваторы оборудуют специальными сменными рабочими органами. Ковши роторных экскаваторов при разработке мерзлых грунтов оснащают специальными сменными зубьями, армированными твердосплавными износостойкими пластинами. Копание мерзлых грунтов ведется на пониженных скоростях тягача и рабочего органа, поэтому производительность экскаватора снижается в 3-5 раз.
Во время работы цепь или ротор движется в плоскости передвижения тягача. Отделение грунта от массива и заполнение им рабочего органа осуществляются в результате сообщения цепи или ротору двух совмещенных движений копания: основного – поступательного относительно рамы (для цепи) или вращательного вокруг своей оси (для ротора) и движения подачи – поступательного в направлении движения машины. Основное движение способствует отделению слоя грунта и направлено по касательной к траектории копания. Движение подачи регулирует толщину отделяемого слоя грунта и направлено перпендикулярно (нормально) касательному. Соотношение скоростей этих движений определяет траекторию движения режущих элементов рабочего органа в продольно-вертикальной плоскости, которая представляет собой наклонную прямую у цепных экскаваторов (рис 1,б) и трахоиду у роторных (рис 2,в).
Толщина стружки, отделяемая цепным рабочим органом, практически постоянна по всей высоте забоя. Роторный рабочий орган отделяет стружку переменной толщины, достигающей максимального значения на уровне оси вращения ротора. Скорость движения рабочего органа и скорость подачи (передвижения машины) подбирают таким образом, чтобы независимо от глубины траншей обеспечивалось 100%-е наполнение ковшей. Рабочая скорость передвижения экскаваторов при копании траншей бесступенчато регулируется в широком диапазоне в зависимости от условий работы, физико-механических свойств грунтов и составляет 5-800 м/ч у цепных машин и 10-500 м/ч у роторных. Скорость движения рабочего органа во многом определяется способом разгрузки ковшей роторных экскаваторов и динамическими нагрузками, действующими на цепь, у цепных. Скорость рабочего органа цепных машин не превышает 2,4 м/с. Рабочие органы современных траншейных экскаваторов имеют несколько скоростей движения, причем пониженные скорости используют при копании траншей в тяжелых талых и мерзлых грунтах. На обоих типах машин применяют гравитационный способ разгрузки под действием собственного веса грунта.
Разгрузка отделенного от массива и поднятого из траншеи грунта производится у двухцепных экскаваторов на поперечный отвальный ленточный конвейер 3 (рис 1,а) при повороте ковшей б или скребков относительно приводных звездочек 4 цепей. Эвакуация поднятого скребками на поверхность грунта по обе стороны от траншеи у одноцепных экскаваторов осуществляется двумя шнеками 9 (рис 1,в) винтового отвального конвейера, приводимого во вращение от цепи рабочего органа, или скребковым конвейером. У роторных экскаваторов (рис 2,а) грунт из ковшей 11 разгружается при достижении ими верхнего крайнего положения над поперечным отвальным ленточным конвейером 7, расположенным внутри ротора 12. Преждевременному высыпанию грунта из ковшей во внутреннюю полость ротора при их подъеме препятствует передний донный щит 6. Ленточные конвейеры цепных и роторных экскаваторов отбрасывают грунт в правую или левую сторону параллельно траншее в отвал или в транспортные средства (рис 1,а) и (рис 2,в). Обычно конвейеры имеют криволинейную форму, что в сочетании с довольно большой скоростью ленты (3,5. 5 м/с) обеспечивает необходимую высоту подъема и дальность отброса грунта.
Глубина отрываемой траншеи у цепного и роторного экскаватора регулируется гидравлическим подъемным механизмом, которым осуществляется также перевод рабочего органа из транспортного положения в рабочее и наоборот. Рабочий орган цепного экскаватора соединен с гидроцилиндрами 1 (рис 1,в) подъемного механизма рычажной системой 2 и заглубляется ими в грунт, удерживается в заданном положении и выглубляется из грунта принудительно.
Рабочий орган роторного экскаватора подвешен на пластинчатых цепях 4 и 5 (рис 2,а) подъемного механизма и заглубляется в грунт до заданной отметки пол действием собственной силы тяжести, a удерживается в заданном положении и выглубляется принудительно гидроцилиндрами 2 и 3. Независимый принудительный подъем и опускание обоих концов рабочего органа позволяют заглублять ротор и выводить его из траншеи при неподвижно стоящем экскаваторе и вести работы в стесненных городских условиях, характеризующихся наличием густой сети дорог, подземных коммуникаций и т.п. Задняя часть рабочего органа роторного экскаватора при копании находится и подвешенном состоянии или опирается на пневмоколесо. Позади ротора установлено зачистное устройство 10 для зачистки дна траншеи от осыпающегося грунта.
Например, индекс ЭТР-252А обозначает: экскаватор траншейный роторный с глубиной копания до 25 дм, вторая модель, первая модернизация.
Основными направлениями дальнейшего совершенствования экскаваторов непрерывного действия является повышение их эксплуатационных характеристик (производительности и надежности), расширение универсальности и области применения.
Производительность как одна из важнейших эксплуатационных характеристик может быть повышена путем увеличения единичной мощности силовых установок для привода рабочего оборудования и совершенствования рабочих процессов разработки в транспортирования грунта.
Совершенствование рабочих процессов предполагает комплексное воздействие на грунт рабочими органами интенсифицирующего действия, применение инерционного способа разгрузки ков шей, использование эффекта обрушения грунта. Принятие указанных мер ведет не только к увеличению производительности, но и к снижению удельных показателей применения.
Надежность экскаваторов непрерывного действия повышают за счет использования современных комплектующих изделий и материалов, более совершенных конструктивных решений, а также высокого уровня их унификации.
Расширение универсальности и области применения экскаваторов непрерывного действия достигается использованием различных видов сменного рабочего оборудования (например, для раз работки мерзлых грунтов, отрывки широких или узких траншей и т.д.).
При проектировании и эксплуатации экскаваторов непрерывного действия различают техническую производительность для каждой категории грунтов и техническую производительность, усредненную по категориям грунта.
Техническая производительность экскаваторов непрерывного действия для грунтов одной группы Пт, м 3 /ч составляет
При определении технической производительности усредненной по категориям грунтов, учитывают долю грунта каждой категории в общей выработке машин и производительность по каждой категории.
Бульдозеры представляют собой навесное оборудование на базовый гусеничный или пневмоколесный трактор (двухосный колесный тягач), включающее отвал с ножами, толкающее устройство в виде брусьев или рамы и систему управления отвалом. Современные бульдозеры являются конструктивно подобными машинами, базовые тракторы и навесное оборудование которых широко унифицированы.
Наиболее распространены бульдозеры с неповоротным отвалом, с поворотным отвалом, бульдозеры-рыхлители, а также бульдозеры-погрузчики.
Бульдозеры с неповоротными отвалами бывают с жесткими (рис. 1, а) и шарнирными (рис. 1, б) толкающими брусьями.
В качестве базовой машины может быть использован трактор, тягач или специальное шасси. Двигатель 10 трактора через муфту сцепления 11 или гидротрансформатор приводит в действие коробку передач 13 и задний мост 14. Звездочки 15 передают вращение от двигателя гусеницам 17, которые перемещают всю машину вперед или назад.
Кабину 12 размещают преимущественно в задней (у тракторов типа ДТ-75Н, Т-4АП2, Т-170) или в средней (у трактора ДЭТ-250М2) части, а также впереди машины со стороны бульдозерного оборудования (у трактора Т-330).
Бульдозеры с поворотным отвалом (рис. 2) отличаются от бульдозера с неповоротным отвалом тем, что на базовый трактор 5 на упряжных шарнирах 6 крепят охватывающую раму 3. Впереди рамы приварена шаровая опора, на которой установлен отвал 1, поворачивающийся налево или направо по ходу движения машины.
По краям отвала располагают толкатели 2, предназначенные для крепления его к охватывающей раме. Переставляя вручную толкатели в кронштейнах на раме, устанавливают отвал в правое положение по ходу машины, среднее или левое. В’ среднем положении отвала бульдозер выполняет такие же работы, как бульдозер с неповоротным отвалом, при боковых положениях отвала засыпают траншеи или очищают снег. Вертикальные перемещения отвала выполняют гидроцилиндрами подъема- опускания 4. Отвал оборудован средними 8 и крайними 7 ножами.
По диагонали четырехзвенника установлены гидроцилиндры 6. В рабочей балке закреплен зуб 3 прямоугольного сечения, на конце которого установлен быстросъемный наконечник 2.
Бульдозер-погрузчик (рис. 4) агрегатируют с колесным трактором или шасси. На базовом тракторе 1 неподвижно закреплена рама 6, представляющая собой две вертикальные наружные стойки, жестко соединенные между собой. К раме шарнирно подвешивают стрелу 2. Одна сторона стрелы поднимается и опускается в вертикальной плоскости двумя гидроцилиндрами 5. На противоположном конце стрелы на двух шарнирах прикреплена рамка, которая поворачивается относительно стрелы двумя гидроцилиндрами 3. К рамке крепят бульдозерный отвал, погрузочный ковш или другие виды сменного рабочего оборудования.
Лекция №4. Скреперы. Автогрейдеры.
Скрепер является самоходной или прицепной (к гусеничному или колесному трактору, колесному тягачу) землеройно-транспортной машиной, рабочим органом которой служит ковш на пневмоколесах, снабженный в нижней части ножами для срезания слоя грунта.
Скреперы предназначены для послойного копания, транспортирования, послойной отсыпки, разравнивания и частичного уплотнения грунтов I. IV категорий при инженерной подготовке территории под застройку, планировке кварталов, возведении насыпей, разработке широких траншей и выемок под различные сооружения и искусственные водоемы и др.
Наиболее эффективно скреперы работают на непереувлажненных средних грунтах (супесях, суглинках, черноземах), не содержащих крупных каменистых включений. При разработке скреперами тяжелых грунтов их предварительно рыхлят на толщину срезаемой стружки. Главным параметром скреперов является геометрическая вместимость ковша (м 3 ), которая лежит в основе типоразмерного ряда этих машин.
— по вместимости ковша – на машины малой (до 5м 3 ), средней (5. 15м 3 ) и большой (свыше 15 м 3 ) вместимости;
Рабочий процесс скрепера состоит из следующих последовательно выполняемых операций: резание грунта и наполнение ковша, транспортирование грунта в ковше к месту укладки, выгрузка и укладка грунта, обратный (холостой) ход машины в забой. При наборе грунта ножи опущенного на грунт ковша срезают слой грунта толщиной h, который поступает в ковш при поднятой подвижной заслонке . Наполненный грунтом ковш на ходу поднимается в транспортное положение, а заслонка опускается, препятствуя высыпанию грунта из ковша. При разгрузке ковша заслонка поднята, а грунт вытесняется принудительно из приспущенного ковша выдвигаемой вперед задней стенкой ковша, причем регулируемый зазор между режущей кромкой ковша и поверхностью земли определяет толщину с укладываемого слоя грунта , который разравнивается (планируется) ножами ковша и частично уплотняется колесами скрепера. При холостом ходе порожний ковш поднят в транспортное положение, а заслонка опущена. Для увеличения тягового усилия скрепера при наполнении ковша в плотных грунтах обычно используют бульдозер-толкач.
У некоторых моделей скреперов для уменьшения сопротивлений при работе в ковше устанавливают наклонный скребковый конвейер (элеватор), осуществляющий принудительную загрузку срезанного ножом слоя грунта в ковш и его выгрузку. Скреперы с элеваторной загрузкой наиболее рационально используются на сыпучих грунтах при выполнении небольших объемов работ.
Грейдеры и автогрейдеры
Автогрейдеры представляют собой самоходные планировочно-профилировочные машины, основным рабочим органом которых служит полноповоротный грейдерный отвал с ножами, установленный под углом к продольной оси автогрейдера и размещенный между передним и задним мостами пневмоколесного ходового оборудования.
При движении автогрейдера ножи срезают грунт, и отвал сдвигает его в сторону.
Грейдеры и автогрейдеры нашли широкое применение в дорожном строительстве: для планирования дорожных оснований при сооружении земляного полотна; возведения земляного полотна из боковых резервов в равнинной и слабопересеченной местности (при высоте насыпи до 0,5-0,75 м); послойного разравнивания грунта в насыпях при работе землеройных машин; для устройства водоотводных канав; планировки откосов, обочин, выемок и насыпей; перемещения грунта и дорожно-строительных материалов, ремонта и содержания грунтовых и гравийных дорог; при железнодорожном, мелиоративном, ирригационном и гидротехническом строительстве, а также для очистки дорог и площадей от снега.
Автогрейдеры используют на грунтах I. III категорий. Процесс работы автогрейдера состоит из последовательных проходов, при которых осуществляется резание грунта, его перемещение, разравнивание и планировка поверхности сооружения.
Современные автогрейдеры конструктивно подобны и выполнены в виде самоходных трехосных машин с полноповоротным грейдерным отвалом, с механической и гидромеханической трансмиссией и гидравлической системой управления рабочими органами. Подробный состав элементов автогрейдеров приведен на (рис. 6.)
Укрупненно каждый автогрейдер состоит из рамы, трансмиссии, ходового устройства, основного и дополнительного рабочего оборудования, механизмов с системой управления и кабины машиниста. Рамы автогрейдеров могут быть жесткими и шарнирно сочлененными. Наличие шарнирно сочлененной рамы обеспечивает повышенную маневренность машины.
Устройство грейдеров. Основным рабочим органом грейдеров является отвал, дополнительными рабочими органами прицепных грейдеров могут быть удлинитель отвала, откосник и планировщик откосов. При перемещении и разравнивании грунта на отвал устанавливают удлинитель, что позволяет разрабатывать участок дороги с более широкой полосой, максимально использовать мощность тягача и повысить производительность.
Основным рабочим органом автогрейдера является отвал. Дополнительное оборудование включает бульдозерный отвал, кирковщик, снегоочиститель, удлинитель отвала, откосник.
Набор рабочего оборудования автогрейдера включает в себя:
Прочный поворотный круг со сменным зубчатым венцом обеспечивает надежность оборудования.
Бульдозерный отвал имеет параллелограммную подвеску.
Кирковщик с тремя зубьями задней навески.
Шарнир рамы обеспечивает складывание автогрейдера в обе стороны на угол до 30°.
Передний мост качанием балки, наклоном колес и их поворотом обеспечивает эффективную работу автогрейдера.
Кабина имеет оптимальную обзорность, регулируемые рулем колонку и сиденье, систему защиты POP EOP, звукоизоляцию, отопительно-вентиляционную установку.
Вынос отвала под углом 90°
Универсальная подвеска грейдерного оборудования позволяет осуществлять вынос отвала в обе стороны на угол 90°.
Угол захвата образуется между продольной осью отвала и продольной осью автогрейдера. Угол захвата определяет ширину захвата полотна дороги, скорость и энергоемкость при вырезании и перемещении грунта вдоль дороги. При зарезании грунта отвалом принимают оптимальный с точки зрения энергоемкости угол захвата (35-45°).
Дополнительными рабочими органами автогрейдера являются: кирковщик (рыхлитель), применяемый для рыхления плотных грунтов и киркования гравийно-щебеночных покрытий при ремонте дорог, бульдозерное оборудование и снегоочиститель.
Рыхлитель-кирковщик может устанавливаться в задней части отвала или в передней части автогрейдера и управляться, с помощью специальных гидроцилиндров. Аналогичным образом на переднем кронштейне хребтовой балки основной рамы устанавливается рабочее обрудование бульдозера и снегоочистителя.
Работа автогрейдера характеризуется двумя режимами: тяговым, или рабочим, и транспортным.
При определении сопротивлений, возникающих в рабочем режиме при резании и перемещении грунта автогрейдером, должны быть известны: род грунта и его характеристика; размеры отвала и углы его установки; вес автогрейдера.
Производительность и технологические схемы работы автогрейдера. Производительность автогрейдера определяется его основными параметрами: размерами ножа, мощностью двигателя, тяговым усилием на колесах и условиями работы (характером грунта, технологией работ и т. д.).
Производительность автогрейдера измеряется объемом вырезанного и перемещенного грунта за единицу времени, в километрах или квадратных метрах спрофилированной дороги или площади.
Возведение насыпи происходит послойно и постепенным наращиванием ее высоты. Если темп потока по возведению земляного полотна намного больше темпа потока по строительству дорожной одежды и уплотнять каждый отсыпанный слой грунта не требуется, валики в насыпи укладывают вприжим без зазора (рис. 7, а), насыпь уплотнится при естественной осадке грунта.
При уплотнении насыпи валики грунта укладывают вполу-прижим (рис. 7, б) с последующим разравниванием и вразбежку (рис. 7, в).
Рис. 7. Схемы укладки валиков грунта в теле насыпи:
Во втором слое валики укладывают вполуприжим, начиная от оси насыпи к обочине, а последние валики по ширине земляного полотна укладывают вприжим, от разрушающего действия поверхностных и грунтовых вод устраивают водоотводные канавы по бокам дороги.
При профилировании грунтовых дорог из боковых канав вырезают грунт и перемещают его к оси дороги с разравниванием и приданием профилю заданного поперечного уклона.
Эти операции может выполнять и один грейдер или автогрейдер, но лучше когда они работают бригадами по четыре единицы.
Лекция №5. Машины для производства бетонных работ.
Основные сведения о бетонных смесях и строительных растворах.
Машины для приготовления бетонных и растворных смесей.
Технологический процесс приготовления смесей включает последовательно выполняемые операции: загрузку отдозированных компонентов (вяжущих, заполнителей и воды) в смесительную машину, перемешивание компонентов и выгрузку готовой смеси.
Смесители классифицируют по трем основным признакам: характеру работы, принципу смешивания, способу установки.
По характеру работы различают смесительные машины периодического (цикличного) и непрерывного действия. В смесителях цикличного действия (рис. 1) перемешивание компонентов и выдача готовой смеси осуществляется отдельными порциями. Каждая новая порция компонентов бетона или раствора может быть загружена в смеситель лишь после того, как из него будет выгружен готовый замес. Смесители цикличного действия обычно применяют при частой смене марок бетонных смесей или растворов. В них можно регулировать продолжительность смешивания.
В смесителях непрерывного действия (рис. 2) загрузка компонентов, их перемешивание и выдача готовой смеси осуществляются одновременно и непрерывно. Отдозированые компоненты непрерывным потоком поступают в смеситель и смешиваются лопастями при продвижении от загрузочного отверстия к разгрузочному. Готовая смесь непрерывно поступает в транспортные средства. Смесители непрерывного действия наиболее целесообразно применять для приготовления больших объемов бетонной или растворной смеси одной марки.
Рис. 1. Принципиальные схемы смесителей цикличного действия (стрелками указано направление движения материалов):
Рис. 2. Принципиальные схемы смесителей непрерывного действия:
По способу установки смесители подразделяются на передвижные и стационарные. Передвижные смесители используются при небольших объемах строительных и ремонтно-строительных работ на рассредоточеных объектах, а стационарные входят в состав технологических линий бетонорастворосмесительных установок средней и большой производительности бетонных и растворных заводов.
Техническая производительность смесительных машин цикличного действия, м 3 /ч,
Техническая производительность смесительных машин непрерывного действия с принудительным смешиванием, м3/ч,
Передвижные малогабаритные растворосмесители цикличного действия (рис. 1) с объемом готового замеса 30 и 65 л применяют на объектах с небольшой потребностью в растворе (до 2,6. 3,0 м3/ч), устанавливают в непосредственной близости от места укладки смеси и перемещают в пределах строительной площадки и рабочего места на колесах. Такие растворосмесители не имеют устройств для дозирования и механической загрузки компонентов. Применение растворосмесителей наиболее рационально для приготовления растворов из сухих смесей при производстве отделочных работ. Малые габариты машин позволяют эксплуатировать их в помещениях.
К цикличным растворосмесителям тарельчатого типа относятся растворосмесители СО-23В, МРБС-100, СР-100 с вертикальным лопастным валом и сменными барабанами-тачками, а также турбулентный высокооборотный растворобетоносмеситель СБ-133А.
Растворосмесители СО-23В, МРБС-100 иСР-100 с объемом готового замеса 65 л выполнены по единой конструктивной схеме и имеют мало различий. Они предназначены для приготовления строительных растворных смесей с подвижностью не менее 5 см, определяемой по ГОСТ 5802-86, и бетонов. К преимуществам смесителей относятся большая активность процесса перемешивания, что предотвращает комкование смеси и позволяет готовить гипсовые и известково-гипсовые растворы.
Рис. 1. Передвижной малогабаритный растворосмеситель цикличного действия: 1 – смесительный барабан; 2 – электродвигатель; 3 – редуктор; 4- механизм поворота (наклона) барабана; рама с ходовой частью
Цикличные смесители принудительного действия лоткового типа выпускают передвижными и стационарными. Передвижные смесители используются, как индивидуальные установки на объектах с небольшими объемами работ предназначены для приготовления различных растворов с крупностью заполнителей до 5 мм.
Растворосмесители непрерывного действия применяют для непрерывного приготовления из сухой растворной смеси кладочной, штукатурной или облицовочной растворной смеси (известковой, цементной, цементно-известковой, известково-гипсовой) подвижностью не ниже 8 см с крупностью частиц до 2,5 мм.
Растворосмесители, работающие на сухих смесях, обеспечивают постоянное качество раствора. Сухие смеси на основе известкового, цементного и гипсового вяжущего централизованно готовят на специализированных заводах и поставляют на строительные площадки в мешках, бункерах, капсулах смесовозами и цементовозами. Такие смесители наиболее целесообразно использовать в комплексах для устройства наливных полов, в высокопроизводительных штукатурных агрегатах и станциях, работающих на сухих смесях и обеспечивающих комплексную механизацию по приему сухих смесей, их переработке, перекачиванию готового раствора и его нанесению на обрабатываемую поверхность.
В строительстве нашли широкое применение смеситель Т-100 производительностью 3 м 3 /ч и две одинаковые по конструкции модели смесителей непрерывного действия: СО-201 (рис. 1) производительностью 1,5 м 3 /ч и СО-211 производительностью 3 м 3 /ч.
Рис. 1. Смеситель СО-201
Каждый смеситель состоит из приемного бункера 4, привода 7, шнека-дозатора 2 с приспособлением для рыхления сухого материала, смесительной цилиндрической камеры (трубы) 1 с выгрузочным окном, лопастного смесительного вала, помещенного в трубе и соединенного со шнеком-дозатором, вододозировочного устройства 3 с регулятором подвижности смеси и прибора для измерения расхода воды, рамы с колесами 5 и электрооборудования 6. Привод шнека-дозатора и лопастного вала осуществляется от электродвигателя через клиноременную передачу.
Принцип действия таких смесителей заключается в следующем: сухая смесь загружается в приемный бункер и шнеком-дозатором подается в смесительную камеру, где смешивается с водой, равномерно подаваемой в емкость через систему дозирования для получения раствора требуемой консистенции. Винтовые лопасти смесителя обеспечивают передвижение смеси вдоль оси смесительной камеры к выгрузочному окну.
При небольших объемах работ смесители используют как самостоятельно действующие машины и загружают сухой смесью вручную из крафт-мешков. При работе смесителей в комплексе со штукатурными агрегатами и станциями их загрузка осуществляется из силоса с сухой смесью.
Применение растворосмесителей непрерывного действия позволяет автоматизировать технологические процессы строительно-отделочных работ.
Стационарные цикличные бетоносмесители роторного (тарельчатого) и лоткового типов используются в качестве встроенного оборудования в технологических линиях бетонорастворных заводов и установок, бетоносмесительных цехов заводов сборных железобетонных изделий и предназначены для приготовления бетонных смесей и строительных растворов.
Амортизаторы позволяют лопастям поворачиваться при попадании между ними и днищем крупных кусков заполнителя. В смесительном устройстве помимо смешивающих лопастей имеются наружная и внутренняя очистные лопасти, прикрепляемые к ротору жестко. Внутренняя поверхность чаши футерована износостойкой сталью. В донной части чаши имеется разгрузочный люк, перекрываемый затвором с рычажным или пневматическим приводом.
Стационарные цикличные гравитационные бетоносмесители применяют на бетонных заводах, централизованно снабжающих товарным бетоном объекты с большим объемом потребления, в бетоносмесительных цехах заводов сборных железобетонных изделий и в бетоносмесительных установках. Они выпускаются объемом готового замеса 500,1000 и 3000 л и выполняются с наклоняющимися двухконусными смесительными барабанами и гидравлическим или пневматическим приводом механизма опрокидывания барабана.
У стационарных цикличных гравитационных бетоносмесителей загрузка компонентов и выгрузка готовой смеси механизированы и осуществляются при вращающемся барабане.
Бетоносмеситель СБ-153А (Рис. 2) объемом готового замеса 1000 л предназначен для приготовления подвижных бетонных смесей с крупностью заполнителя до 120 мм и используется в технологических линиях заводов сборного железобетона, бетонных заводов и в бетоносмесительных установках. Бетоносмеситель состоит из рамы 1 с двумя опорными стойками смесительного барабана 2, траверсы 3, механизма вращения и опрокидывания барабана, электрооборудования и шкафа управления 7.
Опрокидывание смесительного барабана при выгрузке готовой смеси, его возврат и фиксацию в положении загрузки обеспечивает пневматический привод, состоящий из двух пневмоцилиндров 6, приборов воздухораспределения, влагомаслоотделителя, соединительных трубопроводов и глушителя. Питание пневмопривода сжатым воздухом под давлением 0,4. 0,6 МПа осуществляется от воздушной магистрали цеха или завода.
Рис. 2. Смеситель СБ-153А
Машины и оборудование для транспортирования бетонных и растворных смесей.
На качество смесей, перевозимых специализированным автотранспортом, влияют продолжительность перевозки, температура смеси и окружающей среды, состояние дорожного покрытия.
Рис. 1. Авторастворовоз
Главным параметром авторастворовозов является полезная вместимость цистерны или объем перевозимой смеси (м 3 ).
Авторастворовоз 581430 предназначен для перевозки, побуждения и порционной выдачи строительных растворов различных марок и консистенций на строительных площадках. В процессе доставки сохраняются физико-механические свойства строительной смеси.
В комплект оборудования входит горизонтально установленная цистерна полезной вместимостью 2,2 м 3 с развернутой верхней образующей, внутри которой имеется одновальный лопастной побудитель со спиралеобразной лопастью (рис. 2) для перемешивания раствора во избежание его расслаивания при транспортировке. Раствор загружается в цистерну сверху при открытых откидных двустворчатых крышках. Разгружается раствор через разгрузочное устройство, снабженное пневмоуправляемой шиберной заслонкой и разгрузочными лотками. К разгрузочному устройству шарнирно прикреплен дополнительный поворотный лоток.
Управляют работой побудителя с помощью гидрораспределителей как с панели управления, так и из кабины водителя.
Механическая система разгрузки цистерны с управляемой шиберной заслонкой позволяет выдавать раствор порциями и за один рейс машины обслуживать несколько строительных объектов.
Автосмесевозы предназначены для доставки силосов с сухими строительными смесями на строительные объекты и самостоятельной погрузки-выгрузки силосов. Кроме силосов на базовые шасси могут быстро (за 10. 15 мин) устанавливаться другие сменные модули: цистерны, контейнеровозы, самосвальное оборудование и т. п.
Конструкция автосмесовоза позволяет самостоятельно манипулировать спуском-подъемом как пустых, так и груженых силосов; смесевоз обслуживается одним водителем-оператором.
Применение сухих смесей имеет ряд преимуществ по сравнению с традиционными технологиями строительства, а именно: смеси узко специализированы, т. е. каждая смесь предназначена для определенного вида работ (заливка полов, штукатурка, кирпичная кладка и т.д.) и имеет соответствующие добавки, что повышает качество выполняемых работ; готовые сухие строительные смеси могут длительное время храниться в силосах на строительных площадках в неизменном виде и вырабатываться по необходимости; силосы обеспечивают сохранность сухих строительных смесей при транспортировке и хранении заводах, базах и строительных площадках, а дополнительные устройства позволяют дозировать и непрерывно подавать сухие строительные смеси к месту приготовления и использования готовых строительных смесей.
Схема работы автосмесевоза показана на рис. 1. Наиболее эффективна работа автосмесевоза при использовании его с дополнительным навесным оборудованием, включающем универсальную штукатурную машину для готовой штукатурки, пневматическую транспортную установку для всех видов раствора, смеситель непрерывного действия.
Рис. 1. Схема рабочего цикла автосмесевоза
Автобетоносмесители применяют для приготовления бетонной смеси в пути следования от питающих отдозированными сухими компонентами специализированных установок к месту укладки, для приготовления бетонной смеси непосредственно на строительном объекте, а также для транспортирования готовой качественной смеси с побуждением ее при перевозке. Они представляют собой гравитационные реверсивные бетоносмесители с грушевидным смесительным барабаном, установленные на шасси грузовых автомобилей, специальных шасси автомобильного типа или на полуприцепах, агрегатируемых с трехосными тягачами.
Смесительные барабаны имеют постоянный угол наклона оси (10. 15°) к горизонту. Внутри смесительных барабанов установлены двухзаходные винтовые лопасти, обеспечивающие загрузку и перемешивание бетонной смеси при вращении барабана в одну сторону и выгрузку готовой смеси при вращении барабана в обратном направлении (реверсе).
Для загрузки смесительного барабана компонентами смеси или бетонной смесью, а также выгрузки смеси из смесительного барабана на место укладки автобетоносмесители оборудуются лотковыми загрузочно-погрузочными устройствами. Для обеспечения технологического процесса приготовления бетонной смеси из сухих компонентов, предварительно загруженных в смесительный барабан, а также промывки барабана и узлов автобетоносмесителя от остатков бетонной смеси автобетоносмеситель снабжен системой водопитания с баками для воды, аппаратурой для подачи воды под давлением и ее дозирования.
Главным параметром автобетоносмесителей является вместимость смесительного барабана по выходу готовой смеси (м 3 ).
Автобетоносмеситель 581412 (рис. 1) с объемом готового замеса 5 м 3 смонтирован на шасси 1 грузового автомобиля КамАЗ-55111. Рабочее оборудование автобетоносмесителя включает раму 9, смесительный барабан 4 с загрузочно-разгрузочным устройством, механизм 3 вращения барабана, дозировочно-промывочный бак 2, водяной центробежный насос, систему управления оборудованием с рычагами 10, 12 и контрольно-измерительные приборы 11. Смесительный барабан имеет три опорные точки и наклонен к горизонту под углом 15°. Загрузочно-разгрузочное устройство состоит из загрузочной 5 и разгрузочной 6 воронок, складного лотка 7 переменной длины и поворотного устройства 8. Лоток может поворачиваться при разгрузке в горизонтальной плоскости на угол до 180° и в вертикальной плоскости на угол до 60°.
Рис. 1. Автобетоносмеситель 581412
Техническая часовая производительность автобетоносмесителя, м 3 /ч,
Автобетоносмесители на полуприцепе представляют модифицированный вид автобетоносмесителей, которые позволяют транспортировать и готовить бетонную смесь в пути следования или по прибытии на строительный объект.
Технологическое оборудование автобетоносмесителей (рис. 3) смонтировано на полуприцепе ЧМ ЗАП-8001, соединяемом сцепным устройством с трехосными седельными тягачами различных моделей: КамАЗ, МАЗ, «Татра», «Ивеко», «Мерседес-Бенц».
Рис. 3. Автобетоносмеситель на полуприцепе
Полуприцеп имеет две выносные опоры, на которые бетоносмеситель устанавливается по прибытии автопоезда на строительный объект, до тех пор, пока автотягач не доставит очередной загруженный полуприцеп и не заберет для загрузки освободившийся.
Автобетононасосы.
Автобетононасосы предназначены для подачи свежеприготовленной бетонной смеси с осадкой конуса 6. 12 см в горизонтальном и вертикальном направлениях к месту укладки при возведении сооружений из монолитного бетона и железобетона. Они представляют собой самоходные мобильные бетонотранспортные машины, состоящие из базового автошасси, бетононасоса с гидравлическим приводом и шарнирно сочлененной стрелы с бетоноводом для распределения бетонной смеси в зоне действия стрелы во всех ее пространственных положениях. Отечественные автобетононасосы конструктивно подобны и оборудуются двухцилиндровыми гидравлическими поршневыми бетононасосами.
Бетононасос (рис. 1) состоит из двух бетонотранспортных цилиндров 6, поршни которых получают синхронное движение во взаимно противоположных направлениях от индивидуальных рабочих гидроцилиндров 10, осуществляя попеременно такт всасывания смеси из приемной воронки 3 и такт нагнетания ее в бетоновод 1. Движение поршней согласовано с работой поворотного бетонораспределительного устройства 2, поворот которого на определенный угол осуществляется с помощью двух гидроцилиндров 12. Когда в одном из бетоно транспортных цилиндров бетонная смесь всасывается из воронки, во втором через поворотную трубу распределительного устройства смесь нагнетается в бетоновод.
В конце хода нагнетания распределительное устройство изменяет свое положение одновременно с переключением хода приводных гидроцилиндров с помощью следящей системы.
Бетонотранспортные цилиндры помещены в корпус 5, имеющий резервуар 8 иди промывочной воды и сообщающийся со штоковыми полостями бетонотранспортных цилиндров. При замене промывочную воду сливают через спускное отверстие, перекрываемое крышкой с рукояткой 7. Бетононасос снабжен электрогидравлическим блоком управления 9.
Гидравлический привод обеспечивает более равномерное движение смеси в бетоноводе, предохраняет узлы насоса от перегрузок и позволяет в широком диапазоне регулировать рабочее давление и производительность машины. Двухпоршневые бетононасосы с гидравлическим приводом обеспечивают диапазон регулирования объемной подачи 5. 65 м 3 /ч при максимальной дальности подачи до 400 м по горизонтали и до 80 м по вертикали.
Техническая производительность, м 3 /ч, поршневых бетононасосов
Главным параметром автобетононасосов является объемная подача (производительность) в м 3 /ч.
Рис. 2. Автобетононасос
Требования, предъявляемые к машинам для транспортировки бетонных и растворных смесей.
Машины для транспортировки бетонных и растворных смесей должны удовлетворять определенным требованиям.
Смесь должна быть защищена от попадания в нее атмосферных осадков, замораживаниями высушивания.
При доставке смесей необходимо максимально сокращать количество перегрузок.
Высота разгрузки смеси не должна превышать 2 м.
Во избежание расслаивания нельзя перевозить смеси без побуждения в пути на расстоянии свыше 10 км по хорошей и 2 км по плохой дорогам.
При подаче смесей по трубам и шлангам насосное оборудование должно создавать наименьшую пульсацию давления, так как это явление также способствует расслоению смесей.
Выполнение вышеперечисленных требований предопределяет выбор соответствующих машин для транспортирования смесей в конкретных условиях
Лекция №6. Бурильно-крановые машины и машины для бурения скважин под буронабивные сваи.
История бурильных и буровых машин.
Буровые машины, предназначенные для сверления горизонтальных отверстий, уже существовали в XVII столетии, что подтверждается предложением, сделанным в 1683 году механиком Геннинг-Гутманом магистрату города Гарца, на производство буровых работ с помощью его машины. Однако, вследствие недостатков, какими обладали буровые машины того времени, применение их было единичное. В 1803 году зальцбургский инженер Гайншинг и в 1813 г. английский механик Тревич сделали весьма солидные усовершенствования в этого рода машинах; затем в 1844 г. англичанин Брунт предложил молоты в рудниках приводить в движение с помощью сжатого воздуха и производить одновременно вентиляцию штолен. В 1851 году французский инженер Каве первый начал работать этого рода машинами, которые были впоследствии усовершенствованы Бартлетом, предложившим свою машину в 1854 г. управлению по возведению Мон-Сенисского туннеля. Женевский профессор физики Колладон немного ранее, а именно в 1852 г., построил бурильную машину с пневматической передачей, взамен существовавшей до того времени канатной. Строитель Мон-Сенисского туннеля (инженер Соммелье) обе эти идеи соединил в одну и устроил пневматическую бурильную машину, а для сгущения воздуха воспользовался водой горных потоков Альп. Лет пятнадцать тому назад применение буровых машин, действующих сжатым воздухом, при проведении туннелей было редкостью и ограничивалось двумя туннелями, Мон-Сенисским и Сен-Готтардским (см. Туннель); между тем, в настоящее время буровые машины применяются к постройке относительно уже и небольших сооружений, например у нас на Новороссийской ветви Владикавказской железной дороги при постройке туннелей, одного длиной 650,94 саженей и другого в 180 сажен. Все сказанное выше относится к ударным машинам; между тем, идея вращательного бурения, появившаяся в 1848 в Праге и примененная там к сверлению известняков, дала очень хорошие результаты, почему и начала разрабатываться в Австрии (Реттингер), Франции (Леша) и Германии (Ржиг) с не меньшим успехом, как и система ударных машин. В 1864 г. инженер Штопф предложил производить вращательное бурение с помощью воды, находящейся под давлением, а гамбургский инженер Брандт разработал эту идею практически и построил вращательную машину своей системы. Первые опыты с этой машиной произведены были в Сен-Готтардском туннеле, а с 1877 года ими уже работали в полном объеме при сооружении Зонштейнского туннеля у Траунзее, Брандлейтского в Тюрингии, Аральбергского в Швейцарии, Сурамского на Кавказе и во многих рудниках. На последней всемирной выставке в Париже машины Брандта награждены большой золотой медалью.
Щитовая машина представляет собой стальную трубу, оканчивающуюся резцом и закрывающую спереди стальным щитом забойное место штольни. Длина такой трубы бывает различна и зависит от диаметра: от 0,75 до 1,50 саженей. Диаметр трубы бывает в 6 и 10 футов, а для прорытия туннеля под Гудзоном диаметр щитовой машины был в 20 футов и давление, на нее производимое гидравлическими прессами, равнялось 15 тысячам пудов.
Машины этого рода имеют видимое преимущество перед описанными выше, так как вовсе устраняют необходимость употребления взрывчатых веществ, представляющих столь большую опасность для рабочих, и дают возможность более легкого устройства вентиляции и вполне обеспечивают работу от заливания водой, вследствие встречи ключей или просачивания грунта.
Машина Beaumont’a приводится во вращательное движение сжатым воздухом, а поступательное движение получается от гидравлических прессов. Судя по работам, которые велись этой машиной под каналом Ла-Манш, успех таковых в серой меловой формации не превышает 1 метра в час, что представляет собой уже весьма хороший результат. Машина эта всегда может быть применена, когда геологические напластования однообразны, подобно нижним частям меловой формации, и не представляют твердости камня или скалистого грунта. Подробное описание см. в «Annales industrielles» (1882).
Давление воздуха и воды, нужное для приведения Б. в действие, производится с помощью особых аппаратов-насосов или компрессоров. Величина этого давления находится в зависимости от степени твердости буримой горной породы и рода машины. Если все грунты разделить на мягкие, твердые и скалистые, то, по данным профессора Ржига, нужно:
– для ударных машин в грунтах мягких от 1 до 2 атмосфер давления, в твердых от 2 до 3 и в скалистых от 3 до 4 атмосфер давления (к этим цифрам следует прибавить от 20 до 30% на потерю давления, происходящую от трения воздуха в трубах)
– для вращательных машин в грунтах мягких от 40 до 60 атмосфер, в твердых до 80 и скалистых до 150 атмосфер давления. В этого рода машинах потери давления вдоль проводов не замечается. Машины щитовые, так называемые «Beaumont», требуют давления сообразно диаметру штольни и твердости грунта.
Всякая ударная бурильная машина должна выполнить 6 различного рода движений:
– обратный ход ударного стержня,
– поступательное движение его вперед по мере углубления отверстия,
– передвижение самой машины вперед,
– ее отодвигание назад.
Первое и второе движение выполняются регулировкой поршней, третье движение происходит с помощью спиральной дорожки, выделанной на поверхности стержня, которой движется стержень по неподвижному шипу, укрепленному в раме машины; четвертое происходит вследствие одинаковой длины поршневого цилиндра машины с величиной передвижения всей машины; пятое и шестое движения производятся руками.
Всякая вращательная буровая машина должна выполнять два действия:
В качестве сменного бурильного инструмента бурильно-крановых машин используются лопастные, кольцевые и шнековые буры, закрепляемые на конце бурильной штанги, которой сообщается крутящий момент и усилие подачи.
Лопастной бур (рис. 1, а) состоит из корпуса 1 с двумя копающими лопастями в виде двухзаходного винта, забурника 5 и заслонки 2. Лопасти оснащены сменными резцами 4, разрыхляющими грунт и установленными в резцедержателях 3. Забурник, расположенный на конце бурильной головки, задает буру направление и удерживает его на оси бурения. Заслонки препятствуют просыпке грунта при выемке грунта из скважины. Бур крепится к нижнему концу бурильной штанги с помощью пальца. Шнековый (винтовой) бур (рис. 1, б) представляет собой трубчатый остов 9 с винтовыми транспортирующими грунт спиралями в виде сплошной ленты 10. Шнек имеет хвостовик 11 для крепления на конце бурильной штанги. К шнеку крепится сменная бурильная головка 8 с резцами 7 и забурником 6.
Рис. 1. Буры бурильно-крановых машин
Кольцевой бур (рис. 1, в) разрушает грунт по периферии и формирует кольцевую щель, отделяющую керн от массива. Бур состоит из корпуса 12 в виде трубы, на нижней торцевой части которой равномерно расположены кулачки 14 с резцами 15. Поверхность корпуса бура снабжена винтовыми лопастями 13, транспортирующими разрушенный грунт (породу) из кольцевой щели на дневную поверхность. Две отклоняющие планки 16 отбрасывают разрушенный грунт к наружной стенке кольцевой щели.
При бурении скважин в мерзлых грунтах применяют резцы и забурники, армированные твердосплавными пластинками. Бурение скважин осуществляется при вращении бурильного инструмента с одновременным его движением вниз. В процессе бурения скважина необходимой глубины образуется за несколько повторяющихся циклов, каждый из которых включает последовательно выполняемые операции бурения, подъема бурильного инструмента на дневную поверхность, его разгрузку и возврат в забой.
Для бурения скважин различных диаметров каждая бурильно-крановая машина комплектуется набором сменного бурильного инструмента.
Бурильно-крановая машина
Рис. 1. Бурильно-крановая машина
Бурильно-крановая машина БКМ-1501А
Рис. 1. Бурильно-крановая машина БКМ-1501А
На рис. 2 показана кинематическая схема бурильно-кранового оборудования машины БКМ-1501А. Телескопическая штанга 10, на нижнем конце ко торой крепится сменный шнековый бур 11, пропущена через вращатель и шарнирно соединена с вертлюгом 6. Она служит для направленного перемещения штанги. Вертлюг подвешен на канате, сходящем с барабана 3. Вращатель обеспечивает вращение штанги от двух гидромоторов 5 через двухскоростной одноступенчатый редуктор 9.
Рис. 2. Кинематическая схема бурильно-кранового оборудования машины БКМ-1501А
Подъем-опускание штанги с буровым инструментом при бурении скважин и выемке грунта обеспечиваются однобарабанной лебедкой, привод барабана 3 которой осуществляется от высокомоментного гидромотора 1 через одноступенчатый планетарный редуктор 4. Лебедка оснащена ленточным тормозом 2.
Поворот платформы с бурильно-крановым оборудованием в плане обеспечивается механизмом поворота, включающим высокомоментный гидромотор, ленточный тормоз и одноступенчатый зубчатый редуктор, на выходном валу которого закреплена поворотная шестерня, входящая в зацепление с зубчатым венцом опорно-поворотного круга.
При бурении скважин машина опирается на выносные опоры, каждая из которых снабжена опорным гидродомкратом и гидроцилиндром поворота опоры.
Бурильно-крановые машины БМ-205Б и БМ-305А
Бурильно-крановая машина БМ-305А (рис. 1) состоит из базового трактора 2, бульдозерного оборудования 1, рамы 11, опорной стойки 4, бурильно-кранового оборудования, гидравлического механизма установки бурильной мачты, выносных опор с гидродомкратами 12, трансмиссии 7, гидросистемы и электрооборудования.
Рис. 1. Бурильно-крановая машина БМ-305А
Технологический цикл изготовления буронабивных свай включает операции бурения ствола скважины под будущую сваю, изготовление и установку каркаса сваи, бетонирование ствола скважины. Защиту стенок скважин от возможного обрушения при проходке скважин в неустойчивых фунтах осуществляют обычно с помощью обсадных не извлекаемых или инвентарных извлекаемых труб, а также избыточным давлением глинистого раствора или воды. Наиболее трудоемкой и продолжительной (55. 60 % общего времени цикла) технологической операцией является бурение ствола скважины, которое осуществляется с помощью специальных (бурильных) машин или навесного бурильного оборудования, смонтированного на базе одноковшовых экскаваторов с гидравлическим и механическим приводами.
Бурильная машина БМ-2501-1
Бурильная машина БМ-2501-1 (рис. 1) предназначена для бурения вертикальных скважин под защитой обсадных труб диаметром 0,62; 0,75; 0,88; 1,0; 1,18 м и глубиной до 30 м в слабых и обводненных грунтах, а также в не мерзлых устойчивых грунтах I-IV категорий. БМ-2501-1 используется при сооружении буронабивных и буросекущих свай, возводимых в качестве фундаментов и стен в грунте промышленных и транспортных сооружений, в том числе пойменных и русловых опор мостов, несущих подпорных стенок и т. п.
Бурильная машина включает мачту 2, телескопическую штангу 6, лебедку 1, гидромеханический вращатель 8, обеспечивающий две скорости вращения бура (8; 30 мин-1), комплект бурильного инструмента, обсадное оборудование 11, гидроцилиндры подъема-опускания мачты и перемещения вращателя. В комплект бурильного инструмента входит винтовой бур 9, а также бур ковшовый, бур ковшовый скальный, бур винтовой скальный, грейфер штанговый, долото ударное, расширитель, которые значительно увеличивают возможности машины. Ударное долото и грейфер делают возможным преодоление каменистых прослоек.
Рис. 1. Бурильная машина БМ-2501-1
Наличие на машине дополнительной лебедки грузоподъемностью 7 т позволяет обходиться без подъемного крана при монтаже-демонтаже обсадных труб, установке арматурных каркасов.
Лекция №7 Башенные краны. Самоходные стреловые краны.
Башенные краны являются ведущими грузоподъемными машинами в строительстве и предназначены для механизации строительно-монтажных работ при возведении жилых, гражданских и промышленных зданий и сооружений, а также для выполнения различных погрузочно-разгрузочных работ на складах, полигонах, и перегрузочных площадках. Они обеспечивают вертикальное и горизонтальное транспортирование строительных конструкций, элементов зданий и строительных материалов непосредственно к рабочему месту в любой точке роящегося объекта. Темп строительства определяется производительностью башенного крана, существенно зависящей от скоростей рабочих движений.
Башенные краны классифицируют по назначению, конструкции башен, типу стрел, способу установки и типу ходового устройства.
По назначению различают краны для строительно-монтажных работ в жилищном, гражданском и промышленном строительстве, для обслуживания складов и полигонов заводов железобетонных изделий и конструкций, для подачи бетона на гидротехническом строительстве.
По конструкции башен различают краны с поворотной и неповоротной башнями. Башни кранов могут быть постоянной длины и раздвижными (телескопическими).
У кранов с поворотной башней (рис. 1, а) опорно-поворотное устройство 1, на которое опирается поворотная часть крана, расположено внизу на ходовой раме крана или на портале. Поворотная часть кранов включает (кроме кранов 8-й размерной группы) поворотную платформу 2, на которой размещены грузовая 12 и стреловая 3 лебедки, механизм поворота, плиты противовеса 4, башня 11 с оголовком 7, распоркой 6 и стрелой 9. У кранов с неповоротной башней (рис. 1, б) опорно-поворотное устройство 1 расположено в верхней части башни.
Поворотная часть таких кранов включает поворотных оголовок 7, механизм поворота, стрелу 9 и противовесную консоль 15, на которой размещены лебедки и противовес 4, служащий для уменьшения изгибающего момента, действующего на башню крана. На ходовой раме 13 кранов с неповоротной башней уложены плиты балласта 19, а с боковой стороны башни расположены монтажная стойка 18 с лебедкой и полиспастом, предназначенная для поднятия и опускания верхней части крана при его монтаже и демонтаже. Ходовые рамы опираются на ходовые тележки 14, которые обеспечивают передвижение кранов по подкрановым путям.
Рис. 1. Типы и параметры башенных кранов: а – с поворотной башней; б – с неповоротной башней
По способу установки краны разделяют на стационарные (рис. 2,а), самоподъемные (рис. 2, б) и передвижные (рис. 2, в). Передвижные башенные краны по типу ходового устройства подразделяются на рельсовые, автомобильные, на специальном шасси автомобильного типа, пневмоколесные и гусеничные. Рельсовые краны наиболее распространены. Стационарные краны не имеют ходового устройства и устанавливаются вблизи строящегося здания или сооружения на фундаменте. При возведении зданий большой высоты передвижные и стационарные краны для повышения их прочности и устойчивости прикрепляют к возводимому зданию. Прикрепляемые к зданию стационарные краны называют приставными; прикрепляемые к зданию передвижные краны, работающие как приставные, называют универсальными. Самоподъемные краны применяют в основном на строительстве зданий и сооружений большой высоты, имеющих металлический или мощный железобетонный монолитный каркас, который служит их опорой. Перемещение самоподъемных кранов вверх осуществляется с помощью собственных механизмов по мере возведения здания.
Рис. 2. Классификация башенных кранов по способу установки: а – стационарные; б – самоподъемные; в – передвижные
Рис. 1. Типы и параметры башенных кранов: а – с поворотной башней; б – с неповоротной башней
Башенные краны всех размерных групп оборудуются приборами безопасности. К ним относятся ограничители крайних положений всех видов движения, расположенные перед упорами: ограничители передвижения крана, грузовой и контргрузовой тележек, угла наклона стрелы, поворота, высоты подъема, выдвижения башни, передвижения специального подъемника и др. Для защиты кранов от перегрузки при подъеме груза на определенных вылетах применяются ограничители грузоподъемности и грузового момента. Краны также оснащаются тормозами на всех механизмах рабочих движений, нулевой и концевой электрозащитой, аварийными кнопками и рубильниками, анемометрами с автоматическим определением опасных порывов ветра и подачей звуковых и световых сигналов для предупреждения машиниста об опасности, молниеприемниками, полуавтоматическими рельсовыми захватами на ходовых тележках, указателями вылета крюка и грузоподъемности на данном вылете при соответствующей высоте подъема груза и т. д.
Сменная эксплуатационная производительность крана, т/см,
Общее время цикла складывается из машинного времени tм, времени, расходуемого на выполнение ручных операций tp, и времени на вспомогательные операции tв:
Устойчивость передвижных кранов опрокидыванию обеспечивается их собственной массой и проверяется по правилам Госгортехнадзора в рабочем и нерабочем состояниях. Различают грузовую и собственную устойчивость.
Грузовая устойчивость характеризует устойчивость крана с подвешенным грузом (и откинутым противовесом у кранов-трубоукладчиков) при возможном опрокидывании его в сторону груза.
Собственная устойчивость характеризует устойчивость крана в нерабочем состоянии (без рабочего груза) при возможном опрокидывании его в сторону противовесной части крана (контгруза).
Определение опрокидывающего и восстанавливающего моментов производится относительно ребра опрокидывания (головки рельса подкранового пути для башенных кранов, точек касания опорных домкратов аутригеров с подпятниками опор для стреловых самоходных кранов на пневмоходу, края катка левой гусеницы для кранов-трубоукладчиков и т. д.).
Числовое значение коэффициента грузовой устойчивости крана подсчитывается при расположении стрелы в плане перпендикулярно ребру опрокидывания:
При работе крана на горизонтальной площадке, без учета дополнительных нагрузок и уклона пути, коэффициент грузовой устойчивости должен быть не менее 1,4.
Коэффициент собственной устойчивости k2 представляет собой отношение момента М ‘в, создаваемого массой всех частей крана с учетом влияния наибольшего допускаемого уклона площадки (подкранового пути) в сторону опрокидывания, к моменту, создаваемому ветровой нагрузкой M’о, определяемому относительно ребра опрокидывания:
Ветровая нагрузка, действующая на кран и груз, определяется в соответствии с ГОСТ 1451-77 «Краны грузоподъемные. Нагрузка ветровая. Нормы и метод определения».
Самоходные стреловые краны.
Стреловые самоходные краны представляют собой стреловое или башенно-стреловое крановое оборудование, смонтированное на самоходном гусеничном или пневмоколесном шасси. Такие краны являются основными грузоподъемными машинами на строительных площадках и трассах строительства различных коммуникаций. Широкое распространение стреловых самоходных кранов обеспечили: автономность привода, большая грузоподъемность (до 250 т), способность передвигаться вместе с грузом, высокие маневренность и мобильность, широкий диапазон параметров, легкость перебазировки с одного объекта на другой, возможность работы с различными видами сменного рабочего оборудования (универсально) и т. д.
Различают стреловые самоходные краны общего назначения для строительно-монтажных и погрузочно-разгрузочных работ широкого профиля и специальные для выполнения технологических операций определенного вида (краны-трубоукладчики, железнодорожные и плавучие краны и т. п.).
Рис. 2. Схемы стреловых самоходных кранов: а – гусеничного с гибкой подвеской стрелового оборудования; б – пневмоколесного с жесткой подвеской стрелового оборудования
Каждый стреловой самоходный кран (рис. 2) состоит из следующих основных частей: ходового устройства 1, поворотной платформы 13 (с размещеными на ней силовой установкой 10, узлами привода 9, механизмами и кабиной машиниста 17 с пультом управления), опорно-поворотного устройства и сменного рабочего оборудования. Исполнительными механизмами кранов являются: механизм подъема груза, изменения вылета стрелы (крюка), вращения поворотной платформы и передвижения крана.
Стреловые самоходные краны могут осуществлять следующие рабочие операции: подъем и опускание груза; изменение угла наклона стрелы при изменении вылета; поворот стрелы в плане на 360°; выдвижение телескопической стрелы с грузом; передвижение крана с грузом. Отдельные операции могут быть совмещены (например, подъем груза или стрелы с поворотом стрелы в плане). Шасси кранов 14 с пневмоколесным ходовым устройством (рис. 2, б), оборудуется выносными опорами-аутригерами 18 в виде поворотных (откидных) или выдвижных кронштейнов с опорными винтовыми или гидравлическими домами на концах. Аутригеры снижают нагрузки на пневмоколеса, увеличивают опорную базу и устойчивость крана. При работе без выносных опор грузоподъемность крана резко снижается и составляет 20. 30 % от номинальной.
Башенно-стреловое оборудование кранов состоит из башни, управляемого гуська или маневровой стрелы, стрелового полиспаста и грузового полиспаста с крюковой подвеской. Такое оборудование по сравнению со стреловым обеспечивает увеличение обслуживаемой зоны в плане примерно в два раза.
Привод исполнительных механизмов кранов с одномоторным (механическим) приводом осуществляется от дизельного или электрического двигателя через механическую трансмиссию. Эти краны имеют сложную кинематическую схему с большим количеством зубчатых передач, муфт и тормозов. Для изменения направления рабочих движений в кинематическую цепь одномоторных кранов включен реверсивный механизм.
Основными недостатками кранов с механическим приводом являются невозможность бесступенчатого и плавного регулирования скоростей исполнительных механизмов, отсутствие низких «посадочных» скоростей опускания груза, необходимых при ведении монтажных работ. Выпуск кранов с одномоторным приводом постоянно сокращается, они будут заменены машинами с многомоторным приводом.
Многомоторный привод обеспечивает независимую работу исполнительных механизмов, бесступенчатое регулирование их скоростей в широком диапазоне, получение монтажных скоростей перемещения груза, упрощает кинематику кранов, улучшает технико-эксплуатационные показатели машин и т. п.
Рис. 3. Основные параметры стреловых самоходных кранов
При использовании на строительно-монтажных работах автокраны обычно оборудуют сменными удлиненными стрелами различных модификаций, удлиненными стрелами с гуськами, башенно-стреловым оборудованием.
Каждый автокран оснащают четырьмя выносными опорами, устанавливаемыми, как правило, с помощью гидропривода. Для повышения устойчивости кранов во время работы задние мосты автомашин оборудованы гидравлическими стабилизаторами для вывешивания заднего моста при работе на выносных опорах и для блокировки рессор при работе без опор. Автокраны могут перемещаться вместе с грузом со скоростью до 5 км/ч. При движении грузоподъемность автокранов снижается примерно в 3. 5 раз.
Автомобильные краны второй размерной группы с механическим приводом КС-2561К и КС-2561 К-1 грузоподъемностью 6,3 т монтируют на шасси грузового автомобиля ЗИЛ-431412 или ЗИЛ-433362 (4 х 2).
Краны состоят из неповоротной и поворотной частей, опорно-поворотного устройства и стрелового оборудования (рис. 1, а). Поворотная и неповоротная части соединены между собой роликовым опорно-поворотным устройством 13.
Неповоротная часть крана включает ходовую раму 12, жестко прикрепленную к раме автошасси 11, коробку отбора мощности, промежуточный конический редуктор, зубчатый венец опорно-поворотного устройства 13, выносные опоры 1 и стабилизирующее устройство. Поворотная часть крана состоит из поворотной платформы 2, на которой смонтированы решетчатая стрела 7, двуногая стойка 4, противовес, грузовая 5 и стреловая 3 лебедки, реверсивно-распределительный механизм, механизм поворота крана и кабина машиниста 6 с рычагами и педалями управления. Краны оснащаются жесткой решетчатой или выдвижной основной стрелой длиной 8 м в выдвинутом положении.
Операции подъема-опускания груза и поворота стрелы в плане могут быть совмещены. Регулирование рабочих скоростей крановых механизмов производится за счет изменения частоты вращения вала двигателя автомобиля. Лебедки снабжены индивидуальными ленточными нормально замкнутыми тормозами: автоматическим электропневмоуправлением. Механизм поворота оснащен ленточным постоянно замкнутым тормозом 17.
Краны КС-2561К и КС-2561К-1 оснащают выносными опорами с гидравлическим приводом. Питание гидродомкратов выносных опор и гидроцилиндров блокировки подвески осуществляется гидронасосом 22 с приводом от коробки мощности 21.
Наибольшее распространение в России получили автомобильные краны с гидравлическим приводом исполнительных механизмов, обеспечивающим простоту управления краном, плавное бесступенчатое регулирование в широком диапазоне рабочих скоростей крановых механизмов, малые посадочные скорости грузозахватного рабочего органа, совмещение крановых операций.
Отечественные гидравлические автомобильные краны различных производителей выполнены по единой конструктивной схеме с широкой унификацией узлов и агрегатов как внутри типоразмерного ряда, так и между размерными группами (унифицированы грузовые лебедки, механизмы поворота, кабины оператора, выносные опоры, гидроцилиндры, гидронасосы, гидромоторы, гидроаппараты).
Автомобильные краны с гидравлическим приводом выпускаются 3-5-й размерных групп и оборудуются жестко подвешенными телескопическими стрелами (основное рабочее оборудование), длину которых можно изменять при рабочей нагрузке. В качестве сменного рабочего оборудования кранов применяются удлинители стрел, гуськи и башенно-стреловое оборудование, башней которого служит основная телескопическая стрела.
На краны устанавливают телескопические двухсекционные стрелы с одной выдвижной секцией, трехсекционные стрелы с двумя выдвижными секциями и четырехсекционные стрелы с тремя выдвижными секциями. Перемещение выдвижных секций стрел осуществляется с помощью длинноходовых, последовательно действующих гидроцилиндров двойного действия (ход поршня до 6 м) или с помощью гидроцилиндров и канатного полиспаста.
В качестве источника энергии рабочей жидкости на всех кранах применяют аксиально-поршневые гидронасосы.
Рис. 2. Типовая гидрокинематическая схема автомобильного крана четвертой размерной группы грузоподъемностью 20 т
На рис. 2 показана типовая гидрокинематическая схема автокрана четвертой размерной группы грузоподъемностью 20 т, смонтированного на шасси КрАЗ-65101 (6×4).
Грузовая лебедка крана состоит из регулируемого аксиально-поршневого гидромотора 8, цилиндрического двухступенчатого редуктора 10, барабана 9 и нормально замкнутого ленточного тормоза 7 с гидроразмыкателем, включенным параллельно гидромотору. Регулируемый гидромотор грузовой лебедки позволяет осуществлять ускоренный подъем грузов массой до 6 т со скоростью 18,2 м/мин, вдвое превышающей номинальную. Кран оборудован вспомогательной лебедкой, но конструкции аналогичной грузовой, которая обслуживает крюковую подвеску гуська.
Рабочее оборудование крана смонтировано на поворотной платформе, которая опирается на ходовую раму шасси с помощью стандартного роликового опорно-поворотного устройства. Механизм поворота включает аксиально-поршневой гидромотор 6, двухступенчатый редуктор 13 и нормально замкнутый колодочный тормоз 14 с гидроразмыкателем. На выходном валу редуктора закреплена шестерня 11, входящая в зацепление с зубчатым венцом 12 опорно-поворотного устройства.
Гидравлические двигатели крановых механизмов, гидроцилиндры выносных опор и механизма блокировки рессор питаются от двух аксиально-поршневых насосов 16 и 17, привод которых осуществляется от дизеля 1 базовой машины через коробку передач 18 и раздаточную коробку 15. При выключенных насосах от раздаточной коробки приводится в действие механизм передвижения крана. Рабочая жидкость от насосов поступает по трубопроводам к гидроаппаратуре на поворотной платформе через вращающееся соединение. Управление крановыми механизмами осуществляется из кабины машиниста с помощью гидрораспределителей. Рабочие скорости крановых механизмов регулируются изменением частоты вращения вала двигателя автомобиля (и, следовательно, гидронасосов) и дросселированием потоков жидкости, подводимых к гидравлическим двигателям. Рабочее давление жидкости в гидросистеме крана составляет 12…16 МПа.
Гидравлические стреловые краны на специальных шасси
Краны на специальных шасси автомобильного типа. Такие краны выпускаются 5-10-й размерных групп и представляют собой однотипные по конструкции, максимально унифицированные машины. Краны могут работать на выносных опорах и без них и передвигаться по площадке с твердым покрытием с грузом на крюке при стреле, направленной вдоль оси крана назад.
На поворотной платформе размещены: телескопическая стрела, механизм подъема груза, механизм подъема-опускания стрелы, механизм поворота, кабина машиниста с пультом управления и противовес.
Рис. 2. Гидрокинематическая схема крана шестой размерной группы грузоподъемностью 40 т на специальном шасси автомобильного типа
На рис. 2 показана типовая гидрокинематическая схема крана шестой размерной группы на специальном шасси автомобильного типа.
Стреловое оборудование крана состоит из телескопической трехсекционной стрелы длиной 11. 27 м, средняя и верхняя выдвижные секции которой выдвигаются синхронно длинноходовыми гидроцилиндрами двойного действия З и 4. Подъем-опускание стрелы осуществляются двумя синхронно действующими гидроцилиндрами двойного действия 7 и 8, штоки которых в заданном положении фиксируются гидрозамками, установленными на гидроцилиндрах. Механизм подъема груза крана включает одинаковые по конструкции главную и вспомогательную 16 грузовые лебедки, которые различаются между собой длиной барабана.
Основная грузовая лебедка состоит из аксиально-поршневого гидромотора 13, двухступенчатого редуктора, встроенного в барабан 14 с кольцевой нарезкой, дискового нормально замкнутого тормоза 17 с гидроразмыкателем и канатоукладчика 15. Механизм поворота включает аксиально-поршневой насос 9, четырехступенчатый цилиндрический редуктор 12 и нормально замкнутый дисковый тормоз 10 с гидроразмыкателем. На выходном валу редуктора установлена шестерня 11, входящая в зацепление с зубчатым венцом опорно-поворотного устройства. Питание гидравлических двигателей крановых механизмов обеспечивается тремя аксиально-поршневыми насосами, привод которых осуществляется от двигателя 2 шасси через муфту сцепления 5, коробку передач 6, раздаточную коробку 21 и редуктор 20. Привод переднего ведущего моста 1 с управляемыми колесами и двух ведущих задних мостов 18 и 19 осуществляется от раздаточной коробки через карданные валы.
Добронравов С.С., Дронов В.Г.Машины для городского строительства. Учебник для студентов вузов специальности “Городское строительство”М. 1985. 360с
Гальперин М.И., Домбровский И.Г. Строительные машины М. Высшая школа 1980, 344с
Гомозов И.М. Путевые, дорожные и строительные машины.М. Стройиздат 1980, 399с
Волков Д.П., Алешкин Н.И.,Крикун В.Я., Рынсков О.Е. Строительные машины. Учебник для вузов под редакцией Д.П. Волкова М. Высшая школа 1998, 319с
Самоходные скреперы /А.В. Залко, Э.Г. Ронинсон, Н.А. Сидоров.- М.: Машиностроение, 1991.- 256 с