Как продлить ресурс автомобильных светодиодных ламп без применения стабилизаторов
Предупреждение: Будет много букв, но вроде все по делу. Статья рассчитана на новичков, умеющих пользоваться паяльником.
Часть 1. Предисловие
Наверное, многие из вас меняли штатные лампы накаливания в плафонах салона, в подсветке номера, в габаритных огнях, в приборной панели и т.д., на светодиодные лампы.
Как правило, при подобных заменах используются уже готовые автомобильные светодиодные лампы, рассчитанные на напряжение 12 вольт.
По сравнению с лампами накаливания, преимущества светодиодных ламп известны, это малое энергопотребление, большой выбор цветов свечения, меньший нагрев, а также существенно больший срок службы.
Однако, для долгой и счастливой жизни светодиода весьма важно, чтобы протекающий через него ток не превышал заданных производителем величин. При превышении максимально допустимого тока, происходит быстрая деградация кристаллов светодиодов, и лампа выходит из строя.
Поэтому, в «правильные» светодиодные лампы уже встроен стабилизатор тока (драйвер). Но такие лампы, как правило, стоят недешево. В связи с этим, в автолюбительской среде гораздо большее распространение получили дешевые светодиодные лампы, не имеющие встроенного стабилизатора. Примеры таких ламп на фото 1:
Из-за отсутствия стабилизатора, такие лампы весьма чувствительны к скачкам напряжения в бортовой сети автомобиля. Кроме того, хитрые узкоглазые производители ламп рассчитывают их параметры, как правило, на максимальное напряжение 12В. Однако, как известно, при работе двигателя напряжение в бортсети составляет 13.5-14.5В. В итоге, светодиодные лампы, не имеющие стабилизатора, часто служат даже меньше, чем обычные лампы накаливания. Особенно это заметно при использовании светодиодных ламп в подсветке номера и в габаритных огнях, когда светодиоды работают в течение длительного времени. Месяц-другой, реже полгода, и лампа начинает мигать, а вскоре и совсем гаснет.
Один из способов продлить жизнь таким лампам — это подключение их через стабилизаторы тока (или напряжения), которые защитят лампы от скачков напряжения в бортовой сети автомобиля и обеспечат требуемый ток. Однако, такой способ имеет ряд существенных недостатков:
Недостаток 1. Для установки стабилизаторов требуется вмешательство в электропроводку автомобиля, на что пойдет не каждый автовладелец, особенно в гарантийный период.
Недостаток 2. По схемотехнике, стабилизаторы делятся на линейные и импульсные. Линейные довольно сильно греются при относительно небольших токах, а импульсные генерируют высокочастотные помехи, которые влияют на качество приема радио.
Недостаток 3. Ламп в автомобиле много, и на каждую (пусть даже группу ламп) поставить стабилизатор проблематично.
Недостаток 4. Возврат к штатным лампам накаливания может потребовать демонтажа ранее установленных стабилизаторов.
Поэтому, в данной статье я предлагаю способ, как существенно продлить срок службы светодиодных ламп, без использования стабилизаторов. Речь пойдет о простой доработке самих светодиодных ламп.
Часть 2. Немного теории
Мне приходилось разбирать множество автомобильных светодиодных ламп. Несмотря на разный внешний вид, тип цоколя и габаритные размеры, практически все недорогие лампы конструктивно похожи, с небольшими вариациями, которые я отмечу далее.
Итак, среднестатистическая автомобильная светодиодная лампа выполнена по типовой схеме, представленной на рис. 2 (приведен пример для 9 светодиодов):
Обозначение элементов на схеме, слева направо:
R0: Резистор-обманка для системы контроля исправности ламп. О нем я сделаю отдельный материал, здесь его пока не рассматриваем. Этот резистор может присутствовать, а может и нет.
I0 — ток через резистор R0. Добавлено: Резисторы-обманки в светодиодных лампах, плюсы и минусы.
VDS1: Диодный мост. Так как для светодиодов важна полярность подключения, диодный мост позволяет подключать лампу как обычную лампу накаливания, не думая о полярности. Самые дешевые лампы не имеют диодного моста, но, в последнее время, он часто присутствует даже в малогабаритных бесцокольных лампах. Диодный мост установлен в лампу чисто для удобства пользователя.
R1-R3: Токоограничивающие резисторы для цепочек из трех светодиодов HL1.1-HL1.3 и т.д. Эти резисторы задают ток, протекающий через каждую из цепочек светодиодов. Чем больше сопротивление резистора, тем меньше ток через светодиоды.
HL1.1-HL1.3: Цепочка из трех светодиодов. В разных по конструкции светодиодных лампах, количество цепочек и количество светодиодов в цепочке может быть различным, но часто используются именно цепочки из трех светодиодов. На данной схеме для примера показана лампа с тремя цепочками по три светодиода в каждой. Есть лампы, состоящие вообще из одного светодиода, но схемотехника у них такая же.
I1-I3: ток через цепочки, например, I1 — ток через цепочку R1-HL1-HL2-HL3 и т.д. Суммарный ток, потребляемый лампой, равен сумме токов Iобщ=I0+I1+I2+I3.
Чтобы повысить надежность работы лампы, правильно ставить на каждую из цепочек отдельный токоограничивающий резистор R1-R3. В этом случае выход из строя светодиодов в одной из цепочек не повлияет на ток через другие цепочки. Однако, в целях экономии, производители дешевых ламп ставят один общий резистор на все цепочки. Такие лампы менее надежны, но выяснить это суждено уже покупателю. Упрощенная схема лампы с одним токоограничивающим резистором приведена на схеме на рис. 3:
От теории перейдем к практике. Я не буду грузить вас сложными расчетами, просто покажу, что и как делать.
Часть 3. Доработка автомобильных светодиодных ламп, не имеющих встроенного стабилизатора тока
Для доработки ламп понадобятся:
1. Паяльные принадлежности — паяльник на 25-40 Вт, флюс, припой.
2. Наличие мультиметра и паяльного фена приветствуется.
3. Набор резисторов требуемой мощности и номиналов. Возможно, для определения типа и номиналов резисторов, придется предварительно разобрать одну лампу для изучения.
Пример 1: Цилиндрические лампы типа C5W или C10W
Отпаиваем металлические контактные колпачки, нагревая их феном или паяльником сбоку, в месте соприкосновения с платой. Под одним из колпачков видим резистор-обманку R0, о нем поговорим в следующей записи (фото 4):
На фото 5 слева направо видим диодный мост VDS1, две цепочки светодиодов HL1-HL2 по три светодиода в каждой, и общий токоограничивающий резистор R1. Это означает, что данная лампа выполнена по упрощенной схеме с одним резистором (см. рис. 3).
Для сравнения, на фото 6 приведена более «правильная» лампа, где используются три токоограничивающих резистора, по одному на каждую цепочку:
На фото 7 показана светодиодная лампа со светодиодной матрицей (технология COB). Такие лампы легко отличить по внешнему виду, на них не видно отдельных светодиодов. Для матрицы COB используется один токоограничивающий резистор R1. В данном конкретном случае, это не удешевление:
Доработка лампы очень простая и сводится к замене токоограничивающих резисторов на резисторы большего номинала. Тем самым мы уменьшаем ток через светодиоды, в результате они меньше греются и дольше служат.
Я провел ряд измерений на различных светодиодных лампах, и для себя сделал следующие выводы:
Вывод 1: Большинство дешевых ламп рассчитаны производителем на максимальное напряжение 12В, не более. При работе в реальных условиях, при напряжении в бортсети порядка 13.5-14.5В, светодиоды работают с перегрузкой и быстро выходят из строя.
Вывод 2: Увеличение номинала токоограничивающего резистора в 2-3 раза не сильно сказывается на яркости свечения лампы, но пропорционально снижает ток через светодиоды, чем существенно продлевает их ресурс.
Вывод 3: Даже при уменьшении тока в 3-5 раз по сравнению с исходным, светодиодные лампы светят ярче, чем аналогичные лампы накаливания.
Отпаяв колпачки и получив доступ плате, выпаиваем заводской резистор и вместо него впаиваем свой, с увеличенным сопротивлением.
На фото 8 заводской резистор сопротивлением 22 Ом заменен на резистор сопротивлением 100 Ом (почти в 5 раз больше):
Подбором номинала резистора можно изготовить лампы для различных применений, например, для освещения салона сделать поярче, в подсветку номера — поменьше яркостью и т.д. Например, на фото 9, для подсветки номера, я поставил резисторы сопротивлением 150 Ом (в 7 раз больше штатного 22 Ом), яркость все равно осталась больше штатных ламп накаливания:
Пример 2. Бесцокольные лампы T10 W5W
Отгибаем контактные усики и разбираем лампу (фото 10):
Видим, что лампа имеет простейшую конструкцию, без диодного моста, питание на светодиоды подается через один токоограничивающий резистор (фото 11):
Еще одна распространенная разновидность лампы W5W, с одним мощным светодиодом. Разбирается аналогично предыдущему примеру (фото 12):
Здесь в конструкции питание подается через два последовательно включенных резистора. Это сделано для того, чтобы резисторы поменьше грелись (фото 13):
Пример 3. Малогабаритные лампы T5 для приборной панели
Как правило, из-за ограниченного размера, в конструкции таких ламп оставлен лишь один светодиод и один токоограничивающий резистор. Разбираются аналогично лампам W5W, путем отгибания усиков (фото 14-15):
Все рассмотренные лампы дорабатываем аналогично, просто заменяем штатные резисторы на свои, с увеличенным в 2-3-5 раз номиналом. Сопротивление резистора подбираем, в зависимости от требуемой яркости свечения.
Часть 4. Некоторые практические советы
Совет 1. В лампах различного размера и конструкции, могут использоваться различные по типу и размеру элементы. Как правило, компоновка деталей лампы довольно плотная, поэтому запаять вместо штатных другие типоразмеры часто бывает затруднительно, из-за ограниченного свободного места. Поэтому, заранее подбирайте подходящие детали, но при этом чтобы мощность нового резистора не была меньше мощности штатного (фото 16):
Совет 2. При работе с паяльным феном, легко повредить горячим воздухом соседние детали, например, светодиоды. Поэтому, перепаивая резисторы, закрывайте другие детали от воздействия горячего воздуха. Я, например, просто прикрывал светодиоды пинцетом (фото 17):
Совет 3. При выпаивании колпачков ламп C5W и C10W, часть припоя может вытечь. При сборке лампы, для надежной пайки колпачков, можно заранее добавить припоя на контактные пятачки платы, тогда при нагреве припой надежно соединит плату и колпачок.
Совет 4. Некоторые лампы со светодиодными матрицами COB, для красоты прикрыты декоративными пластиковыми стеклами. Эти стекла ухудшают теплоотвод, рекомендую их снять, на внешний вид подсветки по факту это никак не влияет, а охлаждаться лампа будет лучше (фото 19):
И в завершение, небольшой прикол. Интересно, откуда на лампе взялась надпись «КОЛЯ», нанесенная промышленным способом? (фото 20):
Данная простая доработка позволяет существенно продлить ресурс автомобильных светодиодных ламп, даже без использования стабилизаторов тока или напряжения.
Всем яркой и надежной подсветки, до связи!
Защита светодиодов в автомобиле
В бортовой сети автомобиля существует ряд элементов создающих множество помех, скачков напряжения, импульсов обратного тока. Такое нестабильное питание может привести к повреждению или полному выходу светодиодов из строя. Для того, чтобы защитить светодиоды следует принять определенные меры, включающие:
1. Установка предохранительного диода
Рисунок 1. Защита от импульсов обратного тока
Для данной цели мы рекомендуем использовать диоды 1N4007 (арт.40009) или SMD SK26A (арт.40010). Также можно использовать выпрямительный мост SMD (арт.40011), в таком случае модуль будет работать при подключении в любой полярности. Не стоит забывать, про падение напряжения на диоде (обычно от 0.5В до 1В, в зависимости от силы тока) которое следует учитывать при расчете параметров элементов схемы.
2. Установка стабилизатора тока
Для того, чтобы изготовить простейший стабилизатор тока понадобятся стабилизатор с регулируемым выходным напряжением LM317T и резистор мощностью 2Вт.
Рисунок 2. Стабилизатор с регулируемым выходным напряжением LM317T
Схема стабилизатора тока выглядит следующим образом:
Рисунок 3. Схема стабилизатора тока
Номинал резистора для необходимого тока достаточно просто рассчитывается по формуле указанной под схемой. Общую схему подключения светодиодов следует рассчитывать с учетом падения напряжения на стабилизаторе, как минимум, 2,5В. При этом можно упразднить токоограничительные резисторы. Следует отметить, что стабилизатор LM317T рассеивает излишнее напряжение в тепло, и чем больше падение напряжения на нем, тем сильнее следует задуматься об установке радиатора на его теплоотвод.
3. Установка электролитического конденсатора
Конденсатор подключается параллельно схеме с учетом полярности. Он избавит светодиодный модуль от «дрожания» при заведенном двигателе и «моргания» при кратковременном падении напряжения (например, включенных указателях поворота).
После того, как я занялся LED-тюнингом своей верки, одним из наиболее частых вопросов, которые я слышу от заинтересованных лиц, является вопрос как я их подключил. На этот вопрос я и постараюсь ответить в данной статье.
Начнем с того, что диоды, которые продаются у нас, можно разделить на несколько категорий:
- Диоды с резистором, которые вы купите на авторынке, скорее всего будут рассчитаны на 12-14 вольт на входе, которые резистор понижает до номинального для диода напряжения в
3.3 вольта и упакованы они будут в небольшой корпус, из которого будут торчать 2 ноги — плюс и минус. Но, конечно, диоды бывают разные, и перед покупкой, обязательно узнайте, подойдет ли этот диод для подключения к бортовой сети автомобиля.
Обычные белые светодиоды
Но как подключить такие диоды в машине? Опять же, есть несколько способов.
Для начала развею самый популярный «светодиодный» миф: для подключения диодов обязательно нужен резистор, без него диод обязательно сгорит. Глупость это несусветная: у каждого диода, как мы уже заметили, есть такой показатель, как номинальное напряжение. Это напряжение, при котором диод будет жрать свой номинальный ток. Если напруга будет меньше — то и ток, соответственно, будет меньше, а яркость, в свою очередь, будет ниже. Так вот, если на диод приходит напряжение меньшее или равное номинальному, то никакой резистор ему не нужен! Все, миф развеян, теперь продолжим по способам подключения.
Способ с параллельным соединением кусков по 4 или 5 последовательно подключенных диодов — это вообще бред. Ведь не стоит забывать, что напряжение в бортовой сети не всегда составляет 12 вольт, оно то просаживается до 11,8, если слушать музыку с заглушенным движком, то поднимается до 14,5, если его завести. Поэтому, если, руководствуясь этим способом, взять 4 диода — то получим на каждом 3 и 3.6 вольт на незаведенной и заведенной машине соответственно, причем если при 3х вольтах диоды будут светить довольно слабо, то при долгой подаче на них 3.6 вольт они неумолимо деградируют и, в итоге, сгорят нафиг. А если взять 5 штук, то они вообще будут еле светить в обоих случаях. И вот, мы плавно подобрались ко второму, самому популярному способу — подключению диодов через резистор, и тут же встает вопрос: как рассчитать его мощность и сопротивление? Разберемся.
Вспомним из уроков физики в школе закон Ома: R=U/I, что означает: сопротивление = напряжению, деленному на ток. Поэтому, зная рабочий ток каждого диода (у большинства 3,3 вольтовых образцов этот ток составляет 20 миллиампер, смотрите тех.данные у продавца), количество и способ подключение диодов в нашей сети а также планируемое напряжение на входе, мы легко можем рассчитать, каким же сопротивлением должен обладать резистор. Например, у нас есть 7 диодов с номинальным током 20 миллиампер и напряжением 3,3 вольта. Рассчитаем для них резистор, приняв напряжение в бортовой сети = 14,5 вольтам: R14,5-3,3)/((7*20)/1000)=80, то бишь, грубо говоря, для такой конструкции нам нужен резистор, номиналом 80 Ом. Но лучше, на всякий случай, брать резистор номиналом чуть больше — чем меньше ток на диодах — тем дольше они проживут.
Иногда бывает нужно параллельно соединить последовательные пары по несколько одинаковых диодов. В этом случае все считается по той же формуле, но теперь мы считаем каждую последовательную пару как один диод, напряжение которого равно сумме напряжений образующих пару диодов, например для 7 параллельно соединенных пар последовательно соединенных диодов, представленных выше, формула будет выглядеть так: (14,5-6,6)/((7*20)/1000)=56,4.
Далее, озадачимся вопросом: какой мощности нужно подбирать резистор? Для ответа на него берем ту же формулу, по которой считали его сопротивление, только первый знак деления меняем на знак умножения, получим мощность в ваттах. Резистор подбираем с хорошим запасом относительно этой мощности, иначе греться будет капитально.
Но не надо думать, что резисторы — лучшее решение, ведь это далеко не так, и вот почему:
Поэтому расскажу о третьем, самом лучшем решении, которое я не только рекомендую использовать всем без исключения, но и использую сам: микросхемы — стабилизаторы напряжения (по состоянию на 2016 год есть отличный альтернативный вариант, смотрите в конце статьи).
Стабилизаторы напряжения AZ1085T-3.3
Итак, микросхема выбрана и куплена, теперь нужно найти для нее подходящий радиатор и прикрутить ее к нему, не забыв (желательно) смазать соприкасающиеся поверхности термопастой (КПТ-8 или любой другой, например, использующимися как термоинтерфейс между кулером и процессором). Радиатор подойдет любой и от чего угодно — главное, чтобы его размеры позволяли закрепить его в машине и не позволяли перегреваться микросхеме (тут как с видеокартой — градусов 80 — это норма, хотя желательно 50).
Микросхема уже на радиаторе
Плюсы данного варианта подключения:
Как вы уже поняли — этот вариант самый качественный, стабильный и надежный. И только его я рекомендую использовать в любых проектах со светодиодами.
В настоящее время в нашу жизнь интенсивно внедряются светодиоды. Основная проблема оказывается как из запитать. Дело в том, что главным параметром для долговечности светодиода является не напряжение его питание, а ток который по нему течет.
Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением.
Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые — классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут … часа 2-3. Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.
Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.
Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 — 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.
Значить как сделать самый простой стабилизатор тока?
Для этого берем если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А.
Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.
А так LM317L с рабочим током до 100 мА.
Для тех кто не знает Vin — это сюда подается напряжение,Vout — отсюда получаем…., а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением.
Минимальное выходное напряжение 1,25 вольта (это если Adjust «посадить» прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.
Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор!
Схема включения выглядит следующим образом:
С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно — 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться.
На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.
Ток (уточненный ток для резистора стандартного ряда) | Сопротивление резистора | Примечание |
20 мА | 62 Ом | стандартный светодиод |
30 мА (29) | 43 Ом | «суперфлюкс» и ему подобные |
40 мА (38) | 33 Ом | |
80 мА (78) | 16 Ом | четырехкристальные |
350 мА (321) | 3,9 Ом | одноватные |
750 мА (694) | 1,8 Ом | трехватные |
1000 мА (962) | 1,3 Ом | 5 W |
А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг….).
Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле — это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.
P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LM ка потребует радиатор.
Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне.
Количество светодиодов в цепочки надо выбирать с учетом вашего рабочего напряжения минут падения напряжения на стабилитроне минус на диоде.
Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание 20 мАм это рабочий ток для ФИРМЕННЫХ дорогих светодиодов. Только фирменные гарантирует такой ток, поэтому если вы не знаете точного происхождения выбирайте ток в районе 14-15 мАм.
Это для того, что бы потом не удивляться почему так быстро упала яркость или вообще почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому, то что к нам завозят не всегда то, что маркировано на изделии.
Вопрос 1 — сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 вольта. Падение на диоде 0,6. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 вольта. Для автомобиля минимальное напряжение в сети 12,6 — это нормально.
Для белых светодиодов на 20 мАм можно включать 3 шт, для сети 12,6 вольта. Учитывая, что при включенном двигателе нормально рабочее напряжение сети 13,6 вольта (это номинальное, в других вариантах может быть и выше. ), а рабочее LM317до 37 вольт у нас все в норме.
Вопрос 2- как рассчитать сопротивление резистора задающего ток! Хоты выше и было описано, вопрос задают постоянно.
R1 = 125/Ist
где R1 — сопротивление токозадающего резистора в Омах.
1,25 — опорное (минимальное напряжение стабилизации) LM317
Ist — ток стабилизации в Амперах.
Нам нуден ток в 20 мАм — переводим в амперы = 0,02 Ам.
Вычисляем R1 = 1,25 / 0,02 = 62,5 Ома.
Принимаем ближайшее значение 62 Ома.
Еще пару слов о групповом включении светодиодов. Идеальное это последовательное включение со стабилизацией тока.
Светодиоды — это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают в монтируя в изделие защитный диод).
если необходимо подключить массив из светодиодов, то рекомендую такую схему включения
Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.
Как рассчитать значение гасящего резистора для светодиода. Расчет проводиться по закону Ома.
Ток в цепи равен напряжение разделить на сопротивление цепи.
I led = V pit / на сопротивление диода и резистора.
сопротивление резистора и диода мы не знаем, но знаем наш рабочий ток и падения на напряжения на светодиоде. Для маломощных светодиодов ток 20 мАм необходимо принимать
Тип светодиода | Рабочее напряжение (падение на светодиоде) |
Инфракрасный | 1,6-1,8 |
Красный | 1,8-2,0 |
Желтый (зеленый) | 2,0-2,2 |
Зеленый | 3,0-3,2 |
Синий | 3,0-3,2 |
Ультрафиолетовый | 3,1-3,2 |
Белый | 3,0-3,1 |
Зная падения на на светодиоде можно вычислить остаток на напряжения на резисторе.
Например. Питающее напряжение V pit = 9 вольт. Мы подключаем 1 белый светодиод падение на нем 3,1 вольт. Напряжение на резисторе будет = 9 — 3,1 = 5,9 Вольта.
Вычисляем сопротивление резистора
R1 = 5.9 / 0.02 = 295Ом.
Берем резистор с близким более высоким сопротивлением 300 ом.