Как устроено портативное пусковое устройство?
В принципе, начинка портативного пускового устройства, в простонародье именуемого «джамп-стартером», «бустером» или «пускачом», не слишком отличается от начинки пауэрбанка, который сегодня, в эпоху быстроразряжающихся смартфонов, лежит в кармане у каждого второго.
Главное отличие «пускачей» от телефонных пауэрбанков – чрезвычайно высокая токоотдача батареи, позволяющая кратковременно выдавать в пике ток в несколько сотен ампер, а также наличие защит от переполюсовки и короткого замыкания. Эти устройства выпускаются сегодня самыми разными брендами и неплохо себя зарекомендовали в автомобильной среде, реально выручая в ситуациях, когда аккумулятор сел, а ехать нужно срочно.
Для всестороннего рассказа о «джамп-стартерах» как о классе устройств мы взяли две литий-полимерные модели (Li-Po) от известной своими компрессорами марки BERKUT — более компактный JSL-12000 и более мощный JSL-20000:
Ток потребления стартера
Для начала немного познавательной информации – для многочисленной категории автовладельцев, которые до сих пор сомневаются в возможности гаджетов размером с пару пачек сигарет крутить автомобильный двигатель вместо привычной батареи массой 15-17 килограммов. «Как карманный «пускач» выдаст ток в 300-400 ампер, которые потребляет стартер?!» — возмущаются они, подозревая лукавство. Но на деле все достаточно просто и легко объяснимо.
Во-первых, начнем с тех самых пресловутых «сотен ампер» среднестатистического стартера. На такую величину ток подскакивает чрезвычайно коротким импульсом, лишь при страгивании ротора стартера с места. Сразу после того, как началось вращение, и шестерня бендикса придала движение коленвалу, средний ток потребления стартера среднестатистического легкового автомобиля падает до значений в несколько раз меньше пускового. Обычно исправный современный двигатель пускается секунды за полторы, а то и быстрее – после щелчка втягивающего реле аккумулятор отдает 250-300 ампер не более 0,1-0,2 секунды, после чего этот ток падает вдвое, а при начале устойчивого вращения якоря стартера – до 60-70 ампер.
Не все сегодня помнят выключатель массы под названием «ВК-318» — а ведь это популярнейшее устройство стояло в советские времена под капотом в каждой второй машине. И, к сведению, рассчитан тот выключатель был всего лишь на 50 ампер! Как же через него шли 200-300 ампер пускового тока? Да очень легко – именно потому, что реальный высокотоковый импульс крайне непродолжителен и не успевает перегреть даже контакты 50-амперного выключателя. Если представить процесс запуска мотора как токово-временную зависимость, в очень упрощенном виде получится подобный график:
Во-вторых, стандартный свинцово-кислотный аккумулятор автомобиля весит под два десятка кило вовсе не с целью отдать все ресурсы своей массы стартеру! После запуска мотора в батарее остаётся, упрощенно говоря, 95% ее энергии. Поэтому из любого автомобиля можно вынуть его штатный АКБ, поставить на его место батарею в 2-3 раза меньшей емкости, и двигатель, скорее всего, без особенных затруднений заведется. Избыточный запас емкости нужен для беспроблемной работы электросистемы авто при частых запусках и «минусовом» электробалансе, который возникает в холода и при постоянных коротких поездках, типичных для города. Если все эти нюансы убрать, то для «сферически-вакуумного» пуска почти любого мотора было бы достаточно батарей размером с два кулака. И в подтверждение этого возможности «джамп-стартера» весьма наглядно показывает нагрузочная вилка. Берем «пускач» BERKUT JSL-12000 и подключаем к вилке, спираль которой имеет сопротивление 0,05 ома:
При напряжении 12 вольт разрядный ток составит 12/0,05=240 ампер. Вольтметр, подключенный параллельно нагрузке, показывает падение напряжения с 12 вольт до 11, что является нормой для пуска мотора от традиционного свинцового АКБ!
Примеров проверок «бустеров» на реальных двигателях в интернете немало, но в большинстве из них «пускач» является вспомогательным, поскольку часть тока все же обеспечивает подсевший аккумулятор. В этой ситуации трудно оценить реальную эффективность портативного гаджета – особенно сомневающимся… Поэтому лучше всего способности карманного «пускача» демонстрирует полное отсутствие аккумулятора – если подключить устройство не параллельно штатной батарее, а ВМЕСТО нее. Эксперимент в целом неопасный, но все же не слишком корректный, поэтому для забавы проводить его не стоит – тем более, что мы все за вас уже сделали!
Снимаем минусовую клемму с батареи и подключаем к ней минусовой контакт «пускача». Холодный двигатель уверенно заводится раз за разом. BERKUT JSL-12000 с батареей емкостью 12 А/ч сделал 17 запусков подряд, BERKUT JSL-20000 с батареей 20 А/ч — 26 запусков. При том, что, собственно, пуск обычно нужен всего один!
Видеообзор пускового литий-полимерного устройства BERKUT JSL-20000:
Выбираем пуско-зарядное устройство
Зачем нужно пуско-зарядное устройство?
Бытует мнение, что исправный аккумулятор на исправном автомобиле не требует специальной зарядки, что заряд, потраченный на запуск двигателя, с лихвой восполняется работой генератора во время поездки. В нормальных условиях эксплуатации это действительно так. Но если на улице – зима, дальности поездки – небольшие, то времени работы генератора будет не хватать на восполнение увеличившегося с холодами разряда аккумулятора. Опять же, почти каждый автолюбитель хоть раз да забывал выключить на ночь габариты или ближний свет – в нынешние времена это особенно легко сделать – ведь ближний свет по правилам должен быть включен и днем. И в солнечный день, выйдя из машины, вы можете и не заметить, что фары остались включенными.
Что же делать, когда в ответ на поворот ключа, вместо бодрого урчания, из-под капота раздается затихающее «вжк… вжк… вжк»?
Если у вас есть время, поставить аккумулятор на зарядку. Если времени нет – придется воспользоваться пусковым устройством или проводами для «прикуривания». Впрочем, на последние надеяться не стоит – вследствие устойчивого мифа о безусловной вредности «прикуривания» для современных автомобилей, сегодня найти «донора» вам будет непросто. Вот и выходит, что без пускового или зарядного устройства в такой ситуации – никак.
Да и вообще – не стоит ждать, пока аккумулятор сядет настолько, что уже не сможет провернуть стартер. Аккумулятору вредно долгое время пребывать недозаряженным – это приводит к снижению его емкости и срока службы. Поэтому в период повышенной нагрузки на аккумулятор будет целесообразным периодически ставить его на зарядку – хотя бы раз в месяц – эти вы значительно продлите его «жизнь».
Виды пуско-зарядных устройств.
Как уже упоминалось ранее, разделяют пусковые и зарядные устройства. Также существуют пуско-зарядные устройства, объединяющие возможности и тех и других. Назначение этих устройств понятно из названия: пусковые предназначены для пуска двигателя на машине с севшим аккумулятором (подзарядку его предполагается в этом случае производить уже генератором), а зарядные – для зарядки севшего аккумулятора. Ни в коем случае нельзя путать эти устройства: у зарядного устройства не хватит тока для пуска двигателя, а высокий ток пускового устройства может безвозвратно повредить аккумулятор. Более того, при использовании пускового устройства рекомендуется отключить аккумулятор во избежание его повреждения. При использовании же пуско-зарядного устройства, если у него есть переключатель режимов, нужно внимательно следить за тем, какой режим выставлен.
Пусковые устройства бывают автономными и питающимися от сети. Автономное пусковое устройство (оно же пусковой аккумулятор) содержит 12В аккумулятор небольшой емкости, способный давать ток, достаточный для запуска двигателя. Подзаряжаться аккумулятор такого пускового устройства может либо от бортовой сети автомобиля (12В) либо от сети 220В. Подобное устройство может оказаться весьма кстати, если вы посадите аккумулятор своей машины в каком-нибудь безлюдном месте. Да и в городе такие пусковые устройства будут удобны тем, кто не имеет собственного гаража: легкое и компактное автономное пусковое устройство куда проще поднять домой для зарядки, чем тяжелый аккумулятор автомобиля. Другое дело, что в сильный мороз автономный «пусковик» со своей задачей может и не справиться: все-таки его пусковой ток ниже, чем у стандартного аккумулятора, не говоря уже о его емкости. Если вы перед разрядом аккумулятора минут пять безуспешно крутили стартер – надеяться на автономное пусковое устройство не стоит.
Зарядные устройства подразделяются на автоматические и неавтоматические. В автоматических напряжение, ток и время заряда контролируются процессором. В неавтоматических какие-то параметры придется выставлять вручную. На первый взгляд, автоматические зарядные устройства удобнее. Но здесь есть свои тонкости: дешевые «автоматы» зачастую не снабжены контрольными приборами, и следить за процессом заряда предлагается по паре светодиодов. Каким током и напряжением идет зарядка – можно только догадываться. В худшем случае такой прибор может даже повредить аккумулятор. Поэтому, покупая «автомат», желательно не скупиться на устройство, оснащенное цифровым дисплеем или амперметром – чтобы иметь возможность контролировать хотя бы ток зарядки.
Основной плюс автоматических зарядных устройств – возможность автоматического проведения сложных режимов зарядки или профилактических работ по восстановлению сульфатированных аккумуляторов. Хороший «автомат» действительно может «оживить» аккумуляторную батарею, которая уже почти совсем потеряла емкость. Однако перед использованием таких режимов обязательно следует выяснить – допустимы ли они на заряжаемом аккумуляторе. Так, контрольно-тренировочный цикл (КТЦ) – популярный способ восстановления старых сурьмянистых аккумуляторов – способен быстро вывести из строя современный кальциевый аккумулятор. КТЦ предполагает серию полных разрядов и последующих зарядов аккумулятора, а кальциевым АКБ полный разряд полностью противопоказан.
В неавтоматических зарядных устройствах ток, а иногда и напряжение заряда выставляется вручную. Перед выставлением напряжения нелишне будет ознакомиться с руководством по эксплуатации заряжаемой АКБ – если старые сурмянистые аккумуляторы обычно заряжаются напряжением 13,2-14В (именно такое напряжение выдают стандартные зарядные устройства без регулировки), то современные кальциевые аккумуляторы заряжаются напряжением 13,5-14,4В. В конечном счете все зависит от конкретной батареи, но повышенное напряжение заряда хоть и не так вредно, как повышенный ток заряда, но тоже может сократить срок службы батареи.
Ток заряда рекомендуется ни в коем случае не выставлять выше 10% от номинальной емкости, а лучше – не выше 5%. Это увеличит время заряда, но предотвратит аккумулятор от «закипания», которое современным кальциевым АКБ вредит намного больше, чем сурьмянистым или гибридным.
Перед покупкой пуско-зарядного устройства обязательно определите, какой тип аккумулятора установлен на вашем автомобиле и не нарушайте рекомендаций по его зарядке.
Также выделяется отдельный тип предпусковых зарядных устройств, способных производить зарядку высоким (до 18В) напряжением. Что же, высокое напряжение действительно может в разы ускорить заряд – когда нужно быстро зарядить севший аккумулятор, это может оказаться полезным. Но такой режим заряда может сократить службы вашего аккумулятора.
Характеристики пуско-зарядных устройств.
Напряжение заряда выбирается из свойств аккумулятора, который предполагается заряжать. Если предполагается заряжать разные аккумуляторы, нелишне будет задуматься о приобретении устройства с регулируемым напряжением заряда.
Напряжение питания устройств обычно составляет 220В. Исключение составляют автономные пусковые устройства, заряжающиеся от бортовой сети автомобиля.
Тип индикации. Наличие шкалы или дисплея на зарядном устройстве очень желательно – это даст возможность контролировать ток заряда и не дать ему превысить рекомендованный производителем АКБ предел. Особенно это актуально на автоматических зарядных устройствах.
Максимальный пусковой ток пускового устройства. Главный параметр этих устройств, показывающий, сможет ли оно вообще справиться со своей задачей. Какой выбрать максимальный ток – зависит от вашего автомобиля. В среднем для пуска холодного двигателя легкового автомобиля летом требуется максимальный ток в 200-250А, для дизельных двигателей – больше. Для запуска двигателя на морозе ток потребуется выше на 30 и более процентов – зависит от температуры. Двигатели грузовиков пускаются током от 300 и выше ампер.
Максимальный и минимальный ток заряда выбирают исходя из свойств заряжаемых батарей. Зарядное устройство должно обеспечивать ток заряда в 5-10% емкости аккумулятора.
Наличие регулировки тока заряда увеличит ваши возможности по контролю зарядки и предотвратит вредные для вашего аккумулятора режимы зарядки. Если же вы приобретаете зарядное устройство без регулятора тока, то нелишне, чтобы оно было снабжено дисплеем или амперметром.
Некоторые из зарядных устройств оснащены дополнительными разъемами для зарядки различных устройств по USB-кабелю, телефонов или ноутбуков. Возможно, такой функционал окажется для вас нелишним.
Варианты выбора.
Если вам нужно пусковое устройство на случай внезапно севшего «в чистом поле» аккумулятора, обратите внимание на автономные пусковые устройства. Выбирайте те, что обеспечивают пусковой ток хотя бы 250А. Такие устройства стоят от 4000 рублей и смогут вас однажды очень сильно выручить – если вы не забудете держать его заряженным.
В случае сильного мороза автономные устройства уже не помогут. Если вы опасаетесь «встать» в минус 30 градусов, берите пуско-зарядное устройство с питанием от сети, способное выдавать 200-300А. Оно обойдется вам в 2000-7000 рублей.
Если вы не хотите утруждать себя выбором режимов и токов, а желаете иметь простое в обращении устройство для зарядки аккумулятора – берите автоматическое зарядное устройство. Лучше выбирать из тех, на которых можно видеть, каким током сейчас идет зарядка. Они стоят 1600-4000 рублей.
Если же в вашем распоряжении имеется солидный автопарк легковых и грузовых автомобилей, вам следует выбирать из мощных зарядно-пусковых устройств, выдающих от 300А. Цена на них находится в диапазоне 9000-14000 рублей.
Как отремонтировать зарядное устройство для автомобильного аккумулятора
Зарядное устройство является абсолютно необходимым прибором в хозяйстве любого автовладельца. Зарядники позволяют проводить обслуживание аккумулятора – от возобновления запаса энергии до проведения десульфатации АКБ (в зависимости от исполнения), а если есть пуско-зарядное устройство, то от него можно завести автомобиль. Как и любые электронные блоки, эти приборы иногда выходят из строя. При определенных условиях произвести ремонт неисправного ЗУ автомобильного аккумулятора можно самостоятельно.
Самые частые поломки и их диагностика
Наиболее очевидный признак поломки – при включении в сеть и подключении АКБ зарядник не подает признаков жизни:
Во многих случаях проблема кроется в сетевом шнуре или предохранителях. У многих зарядных устройств предохранители находятся внутри корпуса. Чтобы до них добраться, надо снять крышку. Иногда их может не быть вообще, несмотря на то, что на схеме они указаны.
Многие ЗУ включаются только тогда, когда к клеммам подключен аккумулятор, заряженный не менее чем до 10 вольт.
Если устройство реагирует на включение в сеть, но при подключении аккумулятора не индицируются ни напряжение, ни ток, есть основания предполагать выход из строя силовой части (хотя проблема может быть в схеме управления). Надо заметить, что первичная диагностика больше применима к ЗУ, построенным по линейной схеме. У импульсников одно и то же внешнее проявление проблемы может быть вызвано совершенно разными неисправностями, поэтому лучше сразу приступать к разборке и проверке схемы.
Советы по самостоятельному ремонту
Чтобы продиагностировать и отремонтировать ЗУ, надо представлять его устройство. Зарядники строятся по двум схемам:
У каждого варианта есть свои достоинства и недостатки.
Зарядники линейного типа построены относительно просто:
Выходного фильтра в линейных зарядниках, как правило, нет – для зарядки АКБ это не нужно.
По подобному принципу построено зарядно-подзарядное устройство «Кедр-авто». При включении в сеть должен быть слышен негромкий низкочастотный рокот и ощущаться легкая вибрация. Если этого нет, надо проверить напряжение 220 VAC в точках 1 и 2. Если его нет, надо искать в сетевом шнуре и предохранителях. Если напряжение есть, высока вероятность выхода из строя силового трансформатора. Если все в порядке, проверяется наличие низкого переменного напряжения в точках 3 и 4. Если оно есть, то на этом диагностика силового трансформатора закончена.
Дальше проверяется силовая часть. Тиристор испытывается тестером в режиме прозвонки диодов. В обычном состоянии сопротивление в обе стороны должно быть большим – прибор заперт. Но если плюсовым щупом тестера коснуться одновременно анода и управляющего электрода, то тиристор откроется, и мультиметр покажет какое-то сопротивление. Это означает исправность вентиля.
Если силовой трансформатор и ключевые элементы исправны, значит, вопрос в схеме управления. В разных моделях зарядников используются различное построение таких устройств, поэтому общие рекомендации дать невозможно. В каждом конкретном случае надо разбираться самостоятельно. Если схема собрана на дискретных элементах, шансы на успех есть. Если зарядник управляется микроконтроллером, починить ЗУ вряд ли удастся. Заменить микросхему несложно, а вот найти прошивку – тяжело.
В таком приборе напряжение сети:
Основные принципы поиска неисправности можно рассмотреть на примере зарядного устройства ЗУ-3000.
В первую очередь надо проверить переменное напряжение на входе диодного моста (после резисторов R1 и R2). Там должно быть 220 VAC. Если нет – надо проверять последовательно:
Если все в порядке, то проверяется напряжение на выходе моста (на конденсаторах С2, С3, С4). там должно быть около 300 вольт DC. Если нет – проверяется исправность диодов моста VD1-VD4, потом конденсаторы С2, С3, С4. Если и там все ОК, осциллографом надо убедиться в наличии импульсов на выходе D сборки DA1. Если их нет, есть основания подозревать выход из строя силового трансформатора или контроллера ШИМ TOP225YN. Если и здесь все нормально, проверяются вторичные цепи – выпрямитель, фильтр, обратная связь. Если неисправен контроллер AtTiny-26, шансы успешно отремонтировать прибор невелики.
Тест на исправность
Выше упомянуто, что многие зарядники не включаются при отсутствии подключенного аккумулятора. Для тестирования ЗУ после ремонта, если нет полной уверенности в исправности прибора, желательно взять аккумулятор, который не жалко – потерявший емкость и т.п. Подключив такую батарею к заряднику, надо проверить уровень напряжения на клеммах ЗУ. Оно должно быть примерно 14-15 вольт. Если оно существенно больше или меньше, либо уровень нестабилен, зарядник неисправен.
При этом надо контролировать и силу тока (это можно сделать по штатному амперметру). Она должна быть в пределах 0,1 от емкости АКБ (если батарея не очень разряжена). Верность данных встроенного прибора можно проверить внешним амперметром (например, мультиметром).
Стоит ли самому чинить и где можно отремонтировать
Зарядное устройство является достаточно сложным прибором, и визуально обнаружить дефект удается далеко не всегда. К тому же, если даже обуглившийся элемент и найден, причина может быть в другом компоненте. Замена сгоревшей детали приведет лишь к повторению аварии. Поэтому для самостоятельного ремонта потребуются как минимум знания электроники и общие понятия о принципах построения зарядников. Также нужен минимальный приборный парк – мультиметр, а в некоторых случаях и осциллограф. Если какой-то из этих факторов отсутствует, за починку лучше не браться. Также нет особого смысла ремонтировать зарядники, где неисправность обнаружена в намоточных элементах (трансформаторах, дросселях), если нет прибора-донора. Перемотать их «на коленке» с заводским качеством не получится, особенно в устройствах импульсного типа.
Для наглядности рекомендуем тематических видеороликов.
Для ремонта можно обратиться к специалистам. И лучше всего, если есть возможность отнести или отправить неисправный зарядник в официальный сервисный центр. Если такой возможности нет, можно поискать специалиста в интернете – на досках объявлений или специализированных форумах. Также можно обратиться к знакомым или соседям по гаражу. Но если ЗУ попадет в руки самоучек, риск некачественного ремонта возрастает многократно.
Зарядки для электромобилей: как это работает с точки зрения инженера и пользователя
Завтра стартует онлайн-митап про электромобили и силовую электронику — мы об этом уже рассказывали в новостях на Хабре. А сегодня мы погрузимся в эту тему и расскажем, чем мир электротранспорта может заинтересовать инженеров-разработчиков и руководителей проектов: узнаем, как работают зарядки для электрокаров, разберем их внутренности с точки зрения харда и софта, а в конце — посмотрим на прогнозы экспертов.
С появлением электромобилей двигатели внутреннего сгорания с сотнями движущихся частей уступают место электрическим трансмиссиям, в которых таких движущихся частей менее двадцати. Инновации на этом новом рынке зачастую касаются трех главных компонентов:
Зарядные станции и батареи.
Инженеры работают над тем, чтобы увеличить дальность хода авто, повысить его безопасность, срок службы и, конечно, надежность. Самые интересные трансформации сейчас происходят с зарядками и силовыми устройствами, поэтому на них мы и сфокусируемся на завтрашней встрече. Расскажем про силовые устройства нового поколения на основе карбида кремния (SiC), которые сейчас захватывают рынки электромобилей и растут на 27% в год. Узнаем, как развивается инфраструктура зарядных станций в России. А в рамках этой хабрастатьи давайте разберемся с тем, что из себя представляет система зарядных станций для авто.
На наши вопросы ответит Андрей Гольмак — один из лучших мировых специалистов в этой теме. Андрей закончил минский факультет радиофизики и электроники в БГУ, занимался embedded-разработкой, а потом переехал в Канаду и присоединился к небольшой компании, которая одной из первых в мире начала работать с зарядками для электромобилей. В итоге эта компания стала лидером канадского рынка и второй в США. Мы пообщались с Андреем по Zoom и делимся с вами тезисами:
— Что сейчас в целом происходит на рынке зарядок для авто?
— Тем, кто только начинает знакомиться с этой темой, может показаться, что зарядка для электромобиля — это что-то типа зарядки для телефона. На самом деле это сложная экосистема.
Пока этот рынок незрелый. Если кто-то из компаний или инженеров хочет войти в эту отрасль, то сейчас — лучшее время. Меняется вся инфраструктура, сам автомобиль и зарядки, трансформируются поставщики электроэнергии и инфраструктура городов, рождаются интересные проекты. Эти изменения затронут всех в конечном итоге.
Сейчас на рынке зарядок сформировались три сегмента: домашний, частный и общественный. 60% зарядок сейчас составляет домашнее использование, когда пользователи устанавливают зарядку у себя дома, а если есть возможность — в паркинге своего многоквартирного дома.
Частные зарядки — это зарядные станции частных компаний. Например, банк устанавливает зарядки для своих сотрудников, у которых есть свои электромобили. Либо компании, которые доставляют товары Amazon: у них есть парк автомобилей, и они устанавливают для них сеть зарядок в разных городах.
Общественные зарядки доступны для всех, они располагаются в городах и вдоль автотрасс. В качестве аналогии можно привести сеть операторов мобильной связи: ты должен подписаться на определенный тариф, чтобы пользоваться услугами.
Зарядная станция для авто Nissan Leaf, представленная на автошоу в Загребе в 2018 году
— А чем отличаются эти три сегмента — домашний, частный и общественный?
— Начнем с домашнего сегмента, где с точки зрения железа оборудование может быть проще. Это так называемые зарядки второго уровня. Владельцу такой зарядки не нужно как-то специально распределять доступ к пистолету. Основная задача — зарядить свое авто, а статистика, которая потом приходит на смартфон, уже не так важна.
Но дело в том, что в Северной Америке стоимость электроэнергии может варьироваться в зависимости от времени суток — поставщики электричества пытаются компенсировать пиковые нагрузки утром и вечером за счет повышения тарифов. Поэтому сейчас домашние зарядки интегрируются в smart grid, систему управления электроэнергией. Домашние зарядки с такой функцией можно включать изначально на маленьком токе, а ночью, когда стоимость электроэнергии ниже, зарядка автоматически включается на полную мощность. На полную зарядку автомобиля уходит от 6 до 8 часов.
Интеграция со smart grid, конечно, усложняет простейший вариант зарядки: требуется подключение к серверу, а сам сервер подключается к поставщику электроэнергии — так контролируется максимальный ток на зарядках в разное время. Это занятная инженерная задача, но есть еще более интересные проекты: например, коммуникационный интерфейс vehicle to grid (ISO15118). Согласно этой концепции, авто может не только заряжаться, но и отдавать электричество — питать дом, когда электричество дорогое. Такой power bank на колесах. Более того, владелец такого устройства может продавать электроэнергию — возвращать ее в сеть и получать за это деньги.
— Что из себя представляет зарядка с точки зрения железа, hardware-начинки?
— Есть три уровня зарядок. Зарядки первого уровня и правда похожи на зарядки для телефона: подключаем любой розетке на 110—120 вольт, 6—8 ампер.
Для второго уровня (наиболее распространенного) требуется 220—240 вольт с переменным током 30 ампер максимум. Автомобиль с такой зарядкой берет от 6 до 30 ампер.
Рассмотрим, что есть внутри зарядки для домашнего использования:
плата преобразователя энергии (GFCI), которая преобразует напряжение, в ней встроены разные типы защиты;
плата контроля коммуникации с автомобилем, зачастую в зарядках такого уровня используется аналоговый интерфейс (для коммуникации используется сигнал, который называется pilot signal);
коммуникационная плата, которая может иметь свой модемом с wi-fi или кабелем.
Зарядки для частного и публичного использования дополнительно содержат встроенную защиту для ограничения доступа и экраны для общения с пользователем. Также у них может быть контроллер для интеграции в систему управления зданием.
Зарядки третьего уровня для офисов и общественных мест — это такие большие «холодильники» вдоль автотрассы, в больших городах и на заправках. Они достаточно сложны технологически: 100—150 киловатт, сотни ампер, 480 вольт. Это устройства с постоянным током, так называемые DC-зарядки. На полную зарядку авто уходит от 10 до 30 минут максимум. Начинка у них аналогичная, есть графический интерфейс.
QC45 (Level 3) — станция зарядки по стандартам CHAdeMO и CCS. Подходит для электрокаров Nissan, Chevrolet, BMW, Ford, Tesla и др.
Отличительный компонент DC-зарядок — дополнительный power-модуль для преобразования тока и контроля. И когда речь идет о сотнях ампер, сам кабель зарядки довольно тяжелый, не всем хватает сил подключить его. Но Tesla, например, использует водяное охлаждение кабеля, поэтому он у них достаточно легкий.
С точки зрения коммуникации зарядки второго и третьего уровня схожи — в них используются те же модемы для подключения зарядки к серверу. Причем уже сейчас появляются новые задачи для компаний в этой сфере: модемы в старых моделях больше не могут поддерживать нужную скорость и количество данных, которое переносится от зарядки к серверу.
— А почему старых модемов для передачи данных уже недостаточно? За счет чего растет объем этих данных?
Возьмем в качестве примера общественные зарядки: в них может быть установлена простая почасовая оплата, а может быть динамическая, с учетом скидки в зависимости от потребленной электроэнергии, времени суток или рекламных акций конкретных автопроизводителей. Соответственно, возрастает и сложность коммуникации.
Еще один пример — проекты по профилактическому (предиктивному) обслуживанию, когда к зарядкам подключают искусственный интеллект, который по своим алгоритмам предсказывает необходимость обслуживания.
— Какие интерфейсы для передачи данных используются чаще всего и почему?
Используются два типа интерфейса: между зарядкой и модемом + между модемом и сервером. А сами модемы бывают встраиваемые и внешние.
Внешние модемы в основном используются для частных и общественных решений, когда нужно подключить много зарядок к одному модему.
Интерфейсы между зарядкой и модемом — зачастую wi-fi или ZigBee. ZigBee — наиболее эффективный, но пропускная способность у него такая же, как у wi-fi, и ее не всегда достаточно. Wi-fi проще, но не всегда удобен для установки в общественных местах (на улицах или в паркингах, где качество сигнала не всегда хорошее).
Интерфейс между модемом и сервером достаточно простой, это прямое подключение к интернету либо сотовая связь с сим-картой. Разработчики ушли от кабелей и ethernet, потому что зарядки устанавливаются на улице, где неудобно прокладывать кабель под землей — намного проще использовать симку, которая стала доступна по стоимости (несколько долларов в месяц для ИТ-решений).
— А теперь про инфраструктуру: чем отличается заправка для электромобилей от заправок для привычных авто с бензиновым двигателем?
Для зарядки электрокара можно использовать дополнительное приложение и указать в нем тип своего автомобиля. Такое приложение подскажет, как спланировать путь, где зарядиться и сколько это будет стоить. И каждый из этих сервисов — логистика, интеграция с платежами — это отдельные инженерные задачи.
На уровне B2C рынок развивается и предлагает свои плюшки: бонусные программы за использование определенных зарядок. С точки зрения В2В ситуация тоже интересная: если сравнить с мобильной связью, то тут есть возможность обмениваться данными у разных операторов (компаний-поставщиков).
Компактная зарядная станция Sputnik российской компании Portal Energy
— А когда уже сами автомобили будут общаться с зарядками?
Сегодня цифровое общение реализовано только на зарядках третьего уровня. Интерфейс между зарядкой и авто работает примерно так: электромобиль говорит «я готов заряжаться, мне нужно 15 ампер», а зарядка определяет максимальное количество тока, которое авто может потребить.
Тот же стандарт ISO15118 идет с функцией plug-in-charge, благодаря которой автомобиль сам авторизуется в системе, т.е. пользователю не обязательно проводить карточкой по зарядке, чтобы войти в свой аккаунт и получать электроэнергию.
Сейчас самая сложная коммуникация реализована на уровне «зарядка-сервер», а не между авто и зарядкой.
— А что со стандартами в этой теме?
— Все начиналась с компаний, у которых был большой опыт в разработке железа. Потом рынку понадобилось больше программных приложений для обслуживания данных с этих зарядок. Каждый производитель пытался внедрить свой стандарт — сделать протокол для общения между своей зарядкой и своим сервером.
Но клиенты не хотят быть привязанными к одному производителю. Например, город Монреаль как заказчик хочет быть свободен в выборе поставщиков: оставить за собой возможность покупать зарядные станции у разных компаний, а потом подключать их к своей единой системе.
Мало того, что каждый производитель пытался продвинуть свой протокол, так нельзя сказать, что эти протоколы были хорошо оптимизированы. Не хочу бросать камень в огород embedded-разработчиков, но и тогда и сейчас их протоколы были на бинарном уровне, где каждый бит имеет значение. Когда речь идет о больших данных, такой протокол тяжело обслуживать и модифицировать.
Требования от клиентов заставили нас переходить к более сложным протоколам. Стали появляться стандарты общения между зарядкой и сервером. В Европе появился OCPP — Open Charge Point Protocol — протокол открытой зарядной точки. Также стали появляться стандарты общения в сети зарядных станций. И в какой-то момент производители зарядных станций были вынуждены внедрить эти протоколы в свои решения.
Универсальные стандарты задействованы пока не везде, их продолжают внедрять, и они продолжают меняться, так как рынок еще достаточно сырой, и не все стабилизировалось.
— А как рождаются стандарты? Это противодействие на уровне компаний или важнее вклад отраслевых организаций, которые ищут компромисс?
— OCPP — это открытый стандарт, его создавал комитет из представителей разных компаний в Нидерландах. В этом open source-проекте приняли участие не только производители станций и разработчики софта, но также институты.
— А что, если посмотреть на эту тему с точки зрения умного города: зарядки — это ведь только часть подсистемы такого города. Что думаешь про наше будущее, можно ли согласовать всю эту инфраструктуру?
— Я не верю в один общий стандарт. Есть определенные стандарты, которые решают определенные задачи. Например, есть стандарт OpenADR, который позволяет удаленно управлять электроэнергией подключенных электроустройств — он балансирует всплески потребления электроэнергии, и зарядки в него отлично вписываются. Он является частью умного города, но решает конкретную задачу. И таких специализированных стандартов будет достаточно много.
— А как вообще можно подключиться к подобным проектам по разработке инфраструктуры для электротранспорта?
Сложно предвидеть, что будет с этой индустрией через 5 лет. Сейчас можно экспериментировать с разными типами клиентов: работать с банками, с городами, с компаниями со своим парком электромобилей. Если сфокусироваться на решениях проблем клиентов, то ты автоматически будешь двигать индустрию в правильном направлении. А в сборе требований работает стандартная схема: продукт-менеджеры общаются с клиентами, записывают их проблемы, а потом вместе с инженерной командой приоритезируют и выбирают те, решение которых даст максимальный эффект не только в деньгах, но также в новых клиентах и партнерах.
За рамками нашего общения остался самый интересный вопрос для читателей Хабра: а как обстоят дела с инфраструктурой зарядок в России? Об этом мы и поговорим завтра на митапе. Свои вопросы на тему электротранспорта и силовой электроники можно оставлять прямо в комментариях. Мы адресуем их спикерам в прямом эфире, который будет открыт для всех зарегистрированных участников.
А пока поделимся обнадеживающим прогнозом, который несколько дней назад опубликовала британская консалтинговая фирма IDTechEx: в течение следующего десятилетия рынок электрокаров вырастет на 25% и продолжит рост во всех регионах мира в течение 20 лет как минимум. Так что для тех, кто хочет войти в эту отрасль сейчас — и правда лучшее время.