Зарядное для авто регулируемое

Зарядное устройство для автомобильного аккумулятора

Найдено 532 товара

Категория

У многих зарядных и пуско-зарядных устройств имеется функция ускоренной запитки батарей (Boost). Она применима в ситуациях, когда необходимо срочно перезарядить аккумуляторы как можно быстрее. При этом зарядка идет не в штатном режиме, и емкость батареи с каждой такой авральной зарядкой сокращается, поэтому применять ее целесообразно только в экстренных ситуациях. «,»sort»:101,»additional»:false>,<"data":<"value":<"selected":false,"active":true>>,»id»:224731,»type»:»specification»,»label»:»Зарядка щелочных аккумуляторов»,»description»:null,»sort»:106,»additional»:false>],»productCount»:183,»queryString»:»»>» data-category-id=»3609″ data-category-name=»Зарядное устройство для автомобильного аккумулятора» data-bowed-category-name=»в Зарядном устройстве для автомобильного аккумулятора» data-rname=»zu» data-tag-page-id=»» data-make-id=»0″ data-search-string=»» data-reset-link=»/avtogarazhnoe-oborudovanie/oborudovanie-i-instrument-dlya-avtoservisa-i-sto/pusko-zaryadnoe-ustrojstvo/zu/#goods» data-is-search-page=»» data-ab-is-expanded-filters=»» data-is-admin=»» >

51357192

Max ток заряда: 4 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 6/12 В

52236736

Max ток заряда: 2 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

54197854

Max ток заряда: 20 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 6/12 В

Габариты без упаковки: 155х85х200 мм

51106675

Max ток заряда: 45 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12/24 В

Габариты без упаковки: 265x345x230 мм

54197803

Max ток заряда: 15 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 6/12 В

Габариты без упаковки: 155х85х200 мм

53372132

Max ток заряда: 45 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 6/12/24 В

Габариты без упаковки: 330х100х160 мм

51924009

Max ток заряда: 20 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 155х85х200 мм

51106640

Max ток заряда: 4 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 6/12 В

Габариты без упаковки: 170х65х35 мм

52237686

Max ток заряда: 8 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

51524465

Max ток заряда: 10 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 6/12 В

54222604

Max ток заряда: 18 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 155x85x200 мм

51639045

Max ток заряда: 7 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 6/12 В

Габариты без упаковки: 155х85х200 мм

51640642

Max ток заряда: 18 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 155х85х200 мм

51640077

Max ток заряда: 20 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 155х85х200 мм

51924912

Max ток заряда: 7 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 155х85х200 мм

51198502

Max ток заряда: 7 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 155х85х200 мм

51747648

Max ток заряда: 7,5 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 192х160х100 мм

51474678

Max ток заряда: 20 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12/24 В

52127125

Max ток заряда: 4 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Упаковкой выгоднее!
Цена за упаковку 2 шт.: 2 072 р.
Цена за ед. товара: 1 036 р. 1129 р.

51732247

Max ток заряда: 4 А

Напряжение питания: 220 В

Для аккумуляторов напряжением: 12 В

Габариты без упаковки: 190х75х56 мм

Автомобильные зарядки для аккумуляторов используют, чтобы пополнить запас севшей аккумуляторной батареи транспортного средства. Это устройство просто необходимо как автолюбителям, так и профессионалам в автомастерских и гаражах.

Описание оборудования

Современная зарядка для аккумулятора (аккумуляторное зарядное устройство) представляет собой прибор, вырабатывающий ток для пополнения заряда автомобильных аккумуляторов. Для этого его подключают к электросети и соединяют с аккумулятором с помощью кабелей со специальными клеммами (кольцевыми или зажимами типа «крокодил»). Также автомобильная зарядка имеет панель управления с кнопкой включения и системой индикаторов, оповещающих о включении, состоянии зарядки и возникновении ошибок. Некоторые устройства имеют цифровые дисплеи, на которых показывается значение тока, напряжения и другая полезная информация

Технические характеристики

Как заказать?

В нашем интернет-магазине вы можете посмотреть описание, узнать цены и характеристики устройств для зарядки аккумуляторов, а также выбрать наиболее подходящие модели с помощью подбора по параметрам. В каталоге имеется удобная сортировка по рейтингу, что позволит быстро сориентироваться среди множества моделей. Чтобы купить подходящее устройство для зарядки автомобильного аккумулятора, заполните форму на сайте или позвоните менеджеру по бесплатному телефону, который также проконсультирует вас по интересующим вопросам.

Источник

Зарядное для акб — для себя — схемы (часть 2)

f2d361cs 100

Решил выложить общие схемы которые мне понравились и по которым любой может изготовить простейшее зарядное с регулировкой тока из «савдеповских» или новых радиодеталей.

Начнем со схемы по которой в данный момент собрано моя зарядка, рисовал сам сори за корявость. Единственный минус что отсутствует схема регулировки, поэтому далее будут фото схемы где можно подобрать схему регулировки под мой аппарат, а так как я не определился с выбором, то каждый может дать совет какая лучше будет, как по простоте, так и по надежности.

963f2bas 960

Схема №1 проста но найти мощный резистор реостат чтоб выдержал АКБ сейчас проблематично, все советское становится дефицитом, а китай надежностью не блещет.

3a3f2bas 960

Схема №2 старая советская схема самая простая, изготавливали радиолюбители используя детали телевизоров и радиол

263f2bas 960

Схема №3 более сложная советская версия, так как сами транзисторы применяемые в ней не маленького размера, и приходится их монтировать с наружной стороны на отдельный радиатор.

da3f2bas 960

Схема №4 неплохая схема но найти советский транзистор становится теперь проблемой, поэтому под неё нужны аналоги

a63f2bas 960

Схема №5 такая интересная и более сложна, но нужно место на задней панели чтоб размести три транзистора не малого размера либо использовать их аналоги

ba3f2bas 960

Схема №6 похожа на схему №4 с деталями возможна та же проблема если нет на рынке искать аналоги

5a3f2bas 960

Схема №7 одна из распространенных на драйве, я взял фото по идее из первоисточника, изготовление платы под нее не является большой проблемой

63f2bas 960

На всех схемах я выделил регулировочную часть, которая возможно подойдет мне по параметрам.
Некоторые фотографии взяты из интернета на авторство не претендую.
Всем мира и добра, помогите с выбором и если есть какие советы или мысли по данной теме, пишите.

Комментарии 15

247a44es 60

Зло всех советских опубликованных схем:ошибки. Умышленные или по разгильдяйству. И вы туда же Д226 по справочнику: максимальный прямой ток: 300 мА. Вы же их двухамперными обозвали. Такое же говно и КУ2хх. Забудьте о них! bt136 лучше и надёжнее во всех смыслах.
Первая схема вообще без регулировки тока. Глубоко разряженный АКБ она просто добьет огромными токами начальной зарядки!
47000 мкф сглаживающего фильтра… вы усилитель собираете?! АКБ вообще лучше заряжать импульсами. Единственный конденсатор в бортовой сети автомобиля, для сглаживания генераторного тока и есть сам аккумулятор!
Большинство схем ущербные, устарели как морально так и фактически. В их времена АКБ были по большей части сурьмянистые, а сейчас кальциевые. Даже «правильность» алгоритма работы изменилась.

U jbOIZar99Nm8WUMhHlfe ODdQ 60

Пробовал в своё время №4,6-работают отлично, №6-классика- работают и по сей день(собраны в 1988г на ку202и), макс ток зависит от тр-ра и тиристора, №4 можно даже симистор, но ток выше 5А-не нужен.
Но это прошлый век…Сейчас нужно www.drive2.ru/b/3124227/, делается из старого БП от компа, главное-стабилизация напряжения(14.8в)!
Тиристорные зарядники выдают до 16в(зависит от тока, хотя током выше 3-5А, думаю уже никто не заряжает), а АКБ-это не любит совсем…
Да, диодные мосты КВРС-лучше не использовать с тр-рами, греются как утюг, хоть и до 50А(высокое падение напряжения на диодах)-они для импульсных БП!

75QVAXyusFfwJkHjUlDx5ndrQCU 60

Вот попробую показать крупнее prnt.sc/11rb967
сьемка принскрином

f2d361cs 60

Версия кооперативная скорее малым тиражом выпускалась, точной схемы по такому названию врядли, лучше отнести в ремонтную мастерскую, знающие такие устройства без схем ремонтировать могут.

75QVAXyusFfwJkHjUlDx5ndrQCU 60

Ищу схему зарядного устройства АЗУ-1
прилагаю фото помогите пожалуйста АЗУ-1 покупал на Украине примерно 1992-1994 г.г.
prnt.sc/11rb0zy вот ссылка на его вид

3b18952s 60

схема из журнала радио так то работает, но требуется явно более мощный тиристор, для всяких ку202 требуется радиатор, кои все давно переработаны на цвет мет вандалами.

6ec32c9s 60

Радиатор можно с диодного светильника взять, ну на крайняк сделать из алюминиевого листа или шины.

o0AAAgLyF A 60

Вот, пользую много лет и друганам наделал.Элементарный «кулибин»на коленке соберёт за вечер, на коленке.Можно и навесным.Работает-сказка. vrtp.ru/index.php?showtopic=14840&hl=
Дополню.Поскольку у меня проблебно добираться до клемм аккумулятора.Пластика много надо снимать.Я напрямую двумя проводами вывел в салон, снизу, удобный разъём для прикуривателя.Прямо к к аккумуляторным клеммам.Через предохранитель 10 А.В случае долговременного хранения в гараже, просто подключаю эту зарядку.И аккум дольше прослужит и всегда «готов».

E6E6o7VBz3f7VDfxLE8cHTAHrc8 240

b91eabcs 60

есть простейшая и очень надежная схема, где первичка подключается через конденсаторы, переключая их количество, изменяется ток, и ни каких редких деталек

93a5gcs 60

в том то и дело, я никак не могу заставить её работать

93a5gcs 60

просто у меня типо такой схемы без транзистора

f2d361cs 60

Я так понял у вас зарядка с похожей схемой, если вам не сложно можете выложить у себя в бж фотки её, чтоб можно было рассмотреть подробней.

93a5gcs 60

описание схемы 4 можно пожалуйста

f2d361cs 60

А что именно, там на схеме все есть, единственное нужны аналоги кт117б

668c582s 60

у меня собрано по схеме №4, только вместо кт117 стоят кт315 и кт361 по-моему. посмотри мой бж

Источник

Схемы простых мощных зарядных устройств для аккумуляторов.

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.

zar1 2
Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.
zar1 3
zar1 4
Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI. VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

zar1 5
Рис.4

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.

Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).
simistor4
Рис.5

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

zar1 6

zar1 7

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

zar1 8

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

Источник

Электрические схемы для самодельных зарядных устройств

Принцип работы и основные компоненты

Свинцово-кислотные аккумуляторы заряжают постоянным (выпрямленным) напряжением, стабильным по уровню. Чтобы получить ток, втекающий в батарею, зарядное напряжение должно быть выше напряжения АКБ. Ток заряда в таком режиме зависит от разницы напряжений источника и батареи.

word image 19

Стандартная схема построения зарядника содержит:

word image 20

Очень желательны приборы, индицирующие ток и напряжение. Дополнительно ЗУ может оснащаться:

Эти функции являются сервисными и повышают удобство работы с ЗУ.

Принципиальные схемы зарядных устройств

Зарядное устройство для автомобильной батареи можно выполнить на разной элементной базе. Все зависит от наличия комплектующих и квалификации мастера.

Простое зарядное устройство для АКБ автомобиля на 12В

Для регулирования тока и напряжения можно применить обычный потенциометр. Вращением его движка можно подстраивать ток в зарядной цепи.

word image 21

На практике такая схема не используется по двум причинам:

Зато по этой схеме легко понять принцип работы простых зарядников.

word image 22

На практике реализуется другая схема зарядного устройства для сборки своими руками. Здесь потенциометр включен в цепь базы транзистора, и ток через него небольшой. Зарядный же ток идет через коллектор-эмиттер транзистора, а полупроводниковый элемент подобной мощности найти гораздо проще. Но в этом и состоит главный недостаток схемы. Сквозной ток идет через регулирующий элемент, вся излишняя мощность рассеивается на нем. Потребуется радиатор значительной площади.

Для нормальной работы такого зарядника на него надо подавать повышенное напряжение – не менее 18 вольт, чтобы обеспечить запас по регулировке. В соответствии с этим требованием надо выбирать сетевой трансформатор.

Зарядное на тиристоре ку202н

Популярна схема самодельного зарядного устройства, где аккумулятор заряжается выпрямленным напряжением, а ток регулируется вручную посредством тиристора (подходит отечественный КУ202Н или зарубежные аналоги).

word image 23

Сетевое напряжение понижается трансформатором Т1 и выпрямляется мостом VD1..VD4. На однопереходном транзисторе VT2 собран генератор импульсов. Его частота задается цепью из конденсатора C1 и управляемого резистора на VT1. Его сопротивление регулирует потенциометр R5. В начале каждого полупериода генератор запускается через цепь R1VD1, и начинает выдавать импульсы с заданной частотой. Первый импульс открывает тиристор, остальные (следующие до конца полупериода) не имеют значения. Чем раньше открывается ключ на VS1, тем большая часть синусоиды попадает в нагрузку, тем выше усредненное напряжение на аккумуляторе и средний ток, втекающий в него.

word image 24

Амперметр служит для контроля этого тока. Недостаток схемы в том, что напряжение не стабилизировано, и будет изменяться вслед за изменением напряжения сети 220 вольт (оно может меняться в пределах ±5%). Вслед за напряжением будет меняться ток заряда, потому процесс требует периодического контроля и, при необходимости, подстройки. Кроме того, напряжение на АКБ не измерить обычным вольтметром или мультиметром – они рассчитаны на измерение постоянного напряжения, а зарядник выдает резко отличающуюся от постоянки форму. Погрешность будет очень высокой, поэтому для контроля придется отключать аккумулятор и замерять его напряжение.

Фильтрующие конденсаторы после выпрямителя устанавливать нельзя – схема работает только с выпрямленным, но не с постоянным напряжением на входе.

word image

Если однопереходного транзистора нет, схему можно собрать без него. Она немного усложнится. Но вместо регулируемого сопротивления на транзисторе для задания частоты генерации возможно применить обычный потенциометр.

word image 25

Существуют различные варианты данной схемы. Например, регулируемое устройство на симисторе. Здесь силовым ключом служит мощный симистор, а тиристор задействован в схеме формирования открывающих импульсов.

Видео версия: Зарядное с десульфатацией на одном тиристоре.

ЗУ для автомобильного аккумулятора на tl494

Зарядник можно построить на микросхеме TL494. Эта микросхема используется не совсем стандартно – обычно на ней строят полностью импульсные источники питания с выпрямлением сетевого напряжения и «нарезанием» из полученной постоянки высокочастотных импульсов (как в компьютерных БП). Здесь же присутствует и сетевой трансформатор, и выпрямитель вторичного напряжения. Импульсным является только регулируемый стабилизатор. Его достоинство в том, что регулирующий элемент (транзистор) открывается на определенные промежутки времени, через него не течет сквозной ток (равный току нагрузки), поэтому размеры теплоотвода можно значительно уменьшить.

word image 1

Ток заряда регулируется разницей напряжений между АКБ и выходом ЗУ, но микросхема TL494 позволяет выполнить дополнительное ограничение тока. Для этого используется второй усилитель ошибки. Ток ограничителя устанавливается потенциометром R3, а фактический ток замеряется, как падение напряжения на шунте R11. Если ток выше заданного, длительность импульсов уменьшается, напряжение на выходе снижается до достижения необходимого тока. Такой режим полезен при зарядке сильно разряженных батарей, а также позволяет осуществить режим зарядки стабилизированным током. В совокупности с широким диапазоном регулировки напряжения, возможность ограничения тока делает ЗУ универсальным и позволяет заряжать аккумуляторы, сделанные по различным технологиям. Также ограничитель осуществляет защиту силовых элементов от сверхтока.

Номиналы деталей указаны на схеме. Дроссель лучше изготовить на сердечнике из альсифера.

Сердечник обязательно должен иметь воздушный зазор 0,15..1 мм.

При настройке подбирают число витков так, чтобы свист обмотки наблюдался только при среднем токе нагрузки, а при его увеличении исчезал. Если свист исчезает рано (уже при небольших токах) и выходной транзистор греется, количество витков надо увеличить. Ориентироваться надо на 20..100 витков провода диаметром 2 мм. Также при сборке в электросхему надо добавить вольтметр и амперметр (можно цифровой или стрелочный) – пользоваться будет намного удобнее. Напряжение на выходе сглаживается конденсатором C6, его форма близка к постоянному.

Схема с автоматическим отключением

Удобно, чтобы батарея отключалась по окончании процесса пополнения энергии. Один из вариантов схемы такой автоматики приведен на рисунке.

word image 26

Принцип действия основан на контроле напряжения заряжаемой батареи. Как только оно достигнет номинального уровня (он подстраивается потенциометром), транзистор откроется, сработает реле и отключит напряжение с АКБ. При этом загорится светодиод, сигнализирующий об окончании зарядки. Реле можно применить любое с напряжением срабатывания 12 вольт и током контактов не менее 15 ADC.

Достоинство схемы в том, что ее можно собрать на отдельной плате и использовать совместно с любым готовым зарядником. Недостатком является необходимость измерять напряжение непосредственно на клемме аккумулятора, поэтому цепь измерения (выделена красной линией) надо выполнять отдельным проводом с зажимом и подключать непосредственно к плюсовому выводу АКБ.

От этого недостатка свободны схемы с контролем зарядного тока, отключающие ЗУ при снижении тока ниже установленного предела. Для измерения тока в заряднике должно быть установлено измерительное сопротивление (шунт).

Схема мощного ЗУ с регулировкой тока

word image 2

Заслуживает внимания еще одна схема ЗУ, обеспечивающая ток не менее 10 А. Ее особенности:

Принцип регулирования – фазоимпульсный, ключом служит симистор VS1. Ток устанавливается потенциометром R1 и регулируется от нуля до 10 А. Первичная обмотка трансформатора должна иметь достаточную индуктивность. Для его изготовления можно применить ЛАТР-2. Его обмотка будет служить первичкой. Сверху надо обустроить изоляцию (достаточно 3 слоя лакоткани), а поверх намотать вторичную обмотку проводом сечением 3 кв.мм 40+40 витков. Резистор R6 служит нагрузкой выпрямителя и создает импульсы разряда батареи. Считается, что такой режим продлевает период эксплуатации АКБ. Вместо него можно установить автомобильную лампу накаливания на 12 вольт мощностью 10 ватт.

word image 107

Технология сборки

Большинство электронных компонентов лучше собрать на печатной плате. В домашних условиях плату можно изготовить методом ЛУТ или фотоспособом. Разработать рисунок можно в бесплатных программах, например LayOut или условно-бесплатной Eagle. А можно нарисовать дедовским способом на бумаге и нанести рисунок лаком на поверхность фольги. Плата травится в растворе хлорного железа или в следующем составе:

Силовые элементы монтируются на радиаторы достаточной площади. Устанавливать их надо на теплопроводящую пасту. Если теплоотводящая поверхность элемента не соединена с общим выводом, на теплоотвод деталь крепят через изолирующую прокладку – слюдяную или из упругого материала. Радиатором может служить металлическая стенка корпуса. Также можно сделать теплоотвод частью конструкции. Можно организовать обдув радиаторов – тогда их площадь можно значительно уменьшить. Для этого понадобится вентилятор на 12 вольт, который можно подключить к выходу диодного моста.

Корпус подбирается готовым или изготавливается самостоятельно. На передней панели крепятся:

Для подключения проводов, отходящих к аккумулятору, клеммы и разъемы лучше не использовать. Токи через них идут большие, поэтому потенциальный источник дополнительного переходного сопротивления нежелателен. Провода лучше подпаять к плате и вывести через отверстия в передней панели. Сечение проводников должно достаточным – не менее 2 кв.мм, а лучше 4 кв.мм. С другой стороны проводов надо припаять зажимы «крокодил».

word image 27

Это не полный обзор схем зарядок для автомобильного аккумулятора – их существует великое множество. По представленным конструкциям можно понять принципы построения ЗУ, требования к ним, разобраться в несложной схемотехнике. Отработав на практике сборку этих зарядных устройств, впоследствии можно перейти к более серьезным схемам, в том числе с использованием микроконтроллеров.

Часто задаваемые вопросы

Трансформатор можно подобрать промышленного изготовления. Ориентироваться надо на выходное напряжение и ток. Первый параметр должен составлять 12-14 (или 18..24 в зависимости от схемотехники) вольт, второй – от 4 до 10 ампер. Характеристики нескольких подходящих трансформаторов приведены в таблице.

Тип промышленного трансформатора Выходное напряжение, В Наибольший ток, А
ТТП-100 12 7,5
ТТП-150 12 12
ТН8-127/220-50 2х6,3 (обмотки соединяются последовательно) 4,8
ТН28-127/220-50 2х6,3 (обмотки соединяются последовательно) 4,8

Если есть трансформатор подходящей габаритной мощности, но вторичная обмотка не подходит по току или напряжению, ее можно смотать и намотать новую. Габаритная мощность определяется по сечению железа по формуле P=0,8..0,88*S 2 */14000, где:

Площадь сечения для тороидального сердечника вычисляется как (D-d)*h/2 (см.рис), для других типов – a*b.

word image 3

Площадь сечения для разных типов сердечников

Для тока 4..10 А габаритная мощность должна быть не менее, соответственно, 50..120 ВА. Если железо подходит, вторичная обмотка перематывается медным проводом. Его сечение выбирается по упрощенной формуле d=0,72√I, где:

Число витков выбирается по формуле N=(50/S)*V (где V – требуемое выходное напряжение в вольтах) или подбирается экспериментально. Также для расчета можно воспользоваться различными программами-калькуляторами, в том числе размещенными на веб-сервисах.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто