Стабилизация управляемых колёс.
Стабилизацией управляемых колёс называется их свойство сохранять положение, отвечающее прямолинейному движению, и автоматически возвращаться в это положение.
На автомобилях стабилизация управляемых колёс обеспечивается наклоном шкворня или оси поворота колёс в поперечной и продольной плоскостях и упругими свойствами пневматической шины, которые создают соответственно весовой, скоростной и упругий стабилизирующие моменты.
Упругий стабилизирующий момент шины создаётся при повороте управляемого колеса вследствие смещения результирующей боковых сил, действующих в месте контакта шины с дорогой, относительно центра контактной площадки. Стабилизирующий момент шины достигает значительной величины у легковых автомобилей, которые имеют высокоэластичные шины и движутся с большой скоростью. При очень эластичных шинах угол продольного наклона шкворня делают равным нулю, чтобы не усложнять управление автомобилем. Упругий стабилизирующий момент шины резко уменьшается на скользких, обледенелых дорогах.
Стабилизация управляемых колес
Стабилизация управляемых колес. Силы, действующие на автомобиль, стремятся отклонить управляемые колеса от положения, соответствующего прямолинейному движению. Чтобы не допустить поворота колес под действием случайных сил (толчков от наезда на неровности дороги и т. п.), управляемые колеса должны обладать способностью, сохранять положение, соответствующее прямолинейному движению, и возвращаться в него из любого другого положения. Эта способность называется стабилизацией управляемых колес.
Стабилизация обеспечивается наклонами шкворней в поперечной и продольной плоскостях и упругими свойствами пневматической шины.
Поперечный наклон шкворня вызывает подъем центра тяжести автомобиля при повороте управляемых колес. Поворачиваемое колесо, опираясь на дорогу, вызывает соответствующий подъем передней оси и центра тяжести автомобиля. Если отпустить рулевое колесо, то передняя часть автомобиля опустится вниз, и передние колеса возвращаются в положение, соответствующее прямолинейному движению. Стабилизирующий момент, действующий на управляемые колеса, с увеличением угла наклона шкворня и веса, приходящего на переднюю ось, возрастает. На стабилизирующий момент, возникающий вследствие поперечного наклона шкворня, не влияют скорость движения и качество дороги. Поперечный наклон шкворня (6—10°) уменьшает плечо поворота колеса, снижая передачу ударных нагрузок, действующих на рулевое управление от дороги. Часто стабилизирующий момент от наклона шкворня вбок называют весовым стабилизирующим моментом.
Продольный наклон шкворня обычно выбирают таким, при котором нижний конец шкворня смещен вперед относительно вертикали, проходящей через его середину. Вследствие этого точка пересечения оси с дорогой расположена впереди центра контактной площадки колеса и дороги. При движении автомобиля его траектория движения часто имеет криволинейный характер, предопределяющий возникновение центробежной силы. Эта сила стремится сдвинуть автомобиль от центра поворота, чему препятствуют реакции дороги, приложенные в центре контактных площадок и направленные к центру поворота. Реакции управляемых колес, действуя на плече, созданном в результате наклона шкворня назад, стремятся возвратить управляемые колеса в положение, соответствующее прямолинейному движению. Стабилизирующий момент, действующий на управляемые колеса, в результате наклона шкворней в продольной плоскости пропорционален квадрату скорости и называется скоростным стабилизирующим моментом. Угол наклона шкворня в продольной плоскости равен 1—3,5° и в значительной степени связан с упругим стабилизирующим моментом пневматической шины.
Эластичная шина соприкасается с дорогой на определенной площади, называемой контактной площадкой. Силы, действующие в контактной площадке, противодействуют повороту колеса. Создаваемый стабилизирующий момент зависит от эластичности шин. У грузовых автомобилей, снабженных сравнительно жесткими шинами, упругий стабилизирующий момент небольшой, у легковых автомобилей он больше и приводит иногда к чрезмерной стабилизации управляемых колес, затрудняя упраа1ение. Для уменьшения влияния упругого стабилизирующего момента у большинства легковых автомобилей угол наклона шкворня в продольной плоскости делают равным нулю.
Устройство автомобилей
Углы установки управляемых колес
На управляемые колеса при движении автомобиля всегда действуют силы, стремящиеся отклонить их от заданного водителем направления. Устойчивость движения автомобиля обеспечивается стабилизацией управляемых колес, т. е. их способностью без участия водителя возвращаться в нейтральное положение, соответствующее прямолинейному движению.
При качении управляемого колеса сила сопротивления качению создает на плече с ( рис. 1,в ) момент сопротивления повороту, вследствие чего увеличивается усилие на рулевом колесе.
Чтобы снизить этот момент, плоскость управляемых колес устанавливают под углом γ к вертикали. Этот угол называют углом развала колес. Наличие развала уменьшает плечо с и тем самым облегчает управление автомобилем.
Кроме того, при этом колесо поджимается к внутреннему подшипнику ступицы, что предотвращает виляние колеса в случае появления зазоров в подшипниках ступицы.
При качении колеса, плоскость которого отклонена от вертикали, да еще при наличии эластичной шины возникает боковой увод. Для его компенсации оба колеса устанавливают под углом схождения (сокращенно – схождение, сход колес) в горизонтальной плоскости.
Обычно схождение определяют как разность расстояний В и А ( рис. 1,г ) и замеряют в миллиметрах:
Схождение колес у каждой модели автомобилей отличается.
Колебания и стабилизация управляемых колес
Но время движения управляемые колеса автомобиля, имеющего зависимую подвеску, могут колебаться вместе с передним мостом в вертикальной плоскости, а вместе с рулевой трапецией — вокруг шкворней (осей поворота) в горизонтальной плоскости.
Угловые колебания управляемых колес вокруг шкворней недопустимы, т.к. детали ходовой части и рулевого управления воспринимают при этом значительные знакопеременные динамические нагрузки, а колебания с большой амплитудой приводят к потере автомобилем управляемости. Наиболее опасными являются устойчивые колебания колес, т.е. такие, которые непрерывно повторяются. В случае наклона управляемых колес в вертикальной плоскости, например при наезде одного из них на неровность дороги, происходит перекос переднего моста. Это вызывает угловые колебания колес, которые усиливают перекос моста и продолжаются после съезда колеса с неровности. Основным средством уменьшения угловых колебаний колес является применение независимой передней подвески. В этом случае большой наклон при вертикальных перемещениях управляемых колес не происходит.
Рассмотренные колебания являются собственными, они зависят только от характеристик упругих элементов, моментов инерции и масс отдельных деталей. Могут также возникнуть вынужденные колебания, вызванные периодическим действием возмущающей силы, например за счет дисбаланса (неуравновешенности) управляемых колес. При качении неуравновешенного колеса возникает центробежная сила, горизонтальная составляющая которой пытается повернуть колесо относительно шкворня, а вертикальная составляющая — переместить колесо в вертикальном направлении. При качении колеса направление центробежной силы непрерывно меняется, что приводит к его вилянию. Наиболее неблагоприятным является случай, когда оба колеса имеют дисбаланс и неуравновешенные участки расположены в одной плоскости, но с разных сторон от оси вращения колес. В этом случае поворачивающие моменты, действующие на колеса, складываются и угловые колебания становятся особенно сильными. Явным признаком дисбаланса управляемых колес является биение рулевого колеса в процессе движения.
Возмущающая сила может появиться также при чередовании неровностей через приблизительно равные промежутки пути. В этом случае при некоторой скорости движения возможно совпадение частот вынужденных и собственных колебаний, т.е. наступит резонанс, при котором амплитуда колебаний возрастет.
Стабилизацией управляемых колес называют свойство сохранять нейтральное положение (занимаемое ими при прямолинейном движении) и автоматически в него возвращаться.
Измерителями стабилизации колес при выходе автомобиля из попорота служат стабилизирующий момент и угловая скорость поворота рулевого колеса при возвращении его в нейтральное положение.
Стабилизирующий момент Мст возникает благодаря продольному и поперечному наклонам шкворней, а также вследствие поперечной эластичности шины. Этот момент действует на рычаг рулевой трапеции со стороны управляемых колес, а с противоположной стороны действует момент сил сопротивления (трения) в рулевом управлении Мру. При входе автомобиля в поворот водитель должен создать на рулевом колесе момент такой величины, чтобы преодолеть суммарный момент Мст + Мру. Поэтому для облегчения управления автомобилем момент Мст не должен быть особенно большим.
Если при выходе автомобиля из поворота водитель отпустит рулевое колесо, то передние управляемые колеса под действием разности моментов Мст — Мру будут стремиться возвратиться в нейтральное положение. Когда стабилизирующий момент достигнет значения момента трения Мру, возвращение колес в нейтральное положение прекратится, хотя колеса будут еще повернуты на некоторый угол, т.е. силы трения в рулевом управлении ухудшают процесс стабилизации колес. Во время прямолинейного движения автомобиля стабилизирующие моменты на правом и левом колесах взаимно уравновешиваются, и суммарный стабилизирующий момент на рычаге рулевой трапеции равен нулю. Стабилизацию колес в этом случае в основном обеспечивает момент Мру, препятствующий произвольному выходу колес из нейтрального положения.
Устройство автомобилей
Стабилизация управляемых колес
Устойчивость движения автомобиля во многом зависит от того, насколько стабильно держат управляемые колеса заданный курс движения автомобиля.
Если на управляемые колеса будет действовать какой-нибудь мгновенный боковой импульс (наезд колеса на местную микронеровность), то под действием этого импульса колеса повернутся на небольшой угол. После исчезновения импульса положение колес должно автоматически восстановиться.
Стабилизацией управляемых колес называется их свойство сохранять нейтральное положение, заданное им при прямолинейном движении и автоматически возвращаться в него.
Стабилизация управляемых колес достигается упругостью резины шин (упругая стабилизация) или путем наклона шкворней рулевой трапеции.
Упругая стабилизация
Упругий стабилизирующий момент шины создаётся при повороте управляемого колеса вследствие смещения результирующей боковых сил, действующих в месте контакта шины с дорогой, относительно центра контактной площадки.
Во время увода колеса к передней части контакта с дорогой приближаются элементы шины, менее деформированные в поперечном направлении.
Из контакта с дорогой элементы шины выходят в более деформированном состоянии. Поэтому элементарный составляющие поперечной реакции Rу в передней части контакта меньше, чем в задней, и эпюра элементарных поперечных реакций имеет форму, близкую к треугольнику (рис. 1).
Стабилизирующий момент шины достигает значительной величины у легковых автомобилей, которые имеют высокоэластичные шины и перемещаются с большой скоростью.
Упругий стабилизирующий момент шины резко уменьшается на скользких, обледенелых дорогах.
Стабилизация наклоном шкворней
Стабилизирующий момент Мст не всегда в результате упругости шин и не при всех условиях движения оказывается достаточным для обеспечения оптимальной стабилизации колес. Он значительно снижается на скользкой дороге и при действии на колесо продольных сил.
Дополнительно стабилизирующие моменты получают в результате наклонного расположения осей шкворней. Осью шкворня условно называют ось, относительно которой поворачивается поворотная цапфа управляемого колеса.
У большинства современных автомобилей каждый шкворень наклонен как в продольной, так и в поперечной плоскостях.
Для облегчения управления автомобилем (чаще всего переднеприводных) плечо обкатки делают отрицательным (рис. 2, б). При малых углах поворота стабилизирующее действие от поперечного наклона шкворня невелико, поэтому при движении автомобиля с высокими скоростями весовой стабилизирующий момент практически не возникает.
Поэтому чтобы добиться стабилизации управляемых колес в этих условиях шкворни наклоняют и в продольной плоскости колеса на угол γ (рис. 3).
Если возмущающий импульс вызовет увод колес автомобиля и он станет поворачиваться, то на автомобиль начинает действовать поперечная составляющая Ру центробежной силы, которая вызовет боковую реакцию дороги Rу в точке контакта колес с дорогой. Сила же Ру на шкворне, возникшая вследствие действия центробежной силы, будет приложена перпендикулярно плоскости качения колеса и совместно с реакцией Rу создаст пару сил с плечом с, которая будет стремиться вернуть колесо в нейтральное положение.
Так как на величину стабилизирующего момента оказывает влияние центробежная сила, которая зависит от квадрата скорости движения, то этот стабилизирующий момент также будет зависеть от скорости движения, поэтому он называется скоростным стабилизирующим моментом.
При очень эластичных шинах, создающих эффективную упругую стабилизацию колес, угол продольного наклона шкворня делают равным нулю, чтобы не усложнять управление автомобилем.
Развал и схождение управляемых колес
На управляемость автомобиля также оказывают влияние наклоны управляемых колес: развал колес и их схождение.
Шарнирное соединение управляемых колес с балкой моста или кузовом автомобиля подразумевает наличие зазоров в местах этих соединений. В результате при нагрузке автомобиля или по мере износа шкворневых соединений (шаровых опор и т. п.) плоскость качения колеса при движении автомобиля может оказаться наклоненной к плоскости дороги внутрь.
В этом случае колеса будут стремиться катиться по сходящимся траекториям, и будет иметь место качение колес с некоторым боковым проскальзыванием, что вызовет повышенный износ шин и расход топлива.
Чтобы привести управляемые колеса к «чистому» качению их устанавливают с предварительным развалом, т. е. так чтобы их плоскости качения были отклонены в сторону от колеи на угол от 0˚30‘ до 2,5˚.
Тогда при движении автомобиля плоскости качения колес будут почти перпендикулярны плоскости дороги, и боковое скольжение колес уменьшится до минимума. Кроме того, установка колес с развалом уменьшает плечо обката (размер b на рис. 4, а), что облегчает поворот колес.
Однако предварительный развал вызывает стремление колес катиться по расходящимся траекториям, что также приводит к изнашиванию шин. Этот недостаток компенсируется установкой колес со схождением, т. е. установкой их под некоторым углом к продольной оси автомобиля так, чтобы плоскости их качения пересекались впереди автомобиля. Можно сказать, что схождение является следствием установки колес с развалом.
Схождение колес определяется разностью расстояний А и Б (рис. 4, б) спереди и сзади моста на уровне его оси.
Развал и схождение взаимно компенсируют друг друга. Однако встречаются автомобили и с завалом колес. Величину развала или завала колес определяют экспериментально. Чаще всего колеса имеют развал и схождение. Главное, чтобы колесо работало без бокового скольжения, т. е. имело «чистое» (или близкое к этому) качение.
В таблице 1 приведены значения параметров установки управляемых колес некоторых отечественных автомобилей.
Таблица 1. Значения параметров установки развала и схождения различных автомобилей