Крутящий момент, что это и зачем он нужен?
Каждый двигатель внутреннего сгорания рассчитан на определенную максимальную мощность, которую он может выдавать при наборе определенного количества оборотов коленчатого вала. Однако помимо максимальной мощности существует еще и такая величина в характеристике двигателя, как максимальный крутящий момент, достигаемый на оборотах отличных от оборотов максимальной мощности.
Что же означает понятие крутящий момент?
Говоря научным языком, крутящий момент равен произведению силы на плечо ее применения и измеряется в ньютон — метрах. Значит если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.
Для наглядности. Если гайка затянута с усилием 3 кгс, то для ее откручивания придется к ключу с длиной плеча в 1 метр приложить усилие 3 кг. Однако, если на ключ длиной 1 метр надеть дополнительно 2-х метровый отрезок трубы, увеличив тем самым рычаг до 3 метров, то тогда для отворачивания этой гайки потребуется лишь усилие в 1 кг. Так поступают многие автолюбители при откручивании колесных болтов: либо добавляют отрезок трубы, а за неимением такового просто надавливают на ключ ногой, увеличив тем самым силу приложения к баллонному ключу.
Результат всегда един — крутящий момент, это произведение силы на длину рычага, стало быть, нужен либо длиннее рычаг, либо большее количество прикладываемой силы.
Все это хорошо, но для чего нужен крутящий момент в автомобиле и как его величина влияет на его поведение на дороге?
Мощность двигателя лишь косвенно отражает тяговые возможности мотора, и ее максимальное значение проявляется, как правило, на максимальных оборотах двигателя. В реальной жизни в таких режимах практически никто не ездит, а вот ускорение двигателю требуется всегда и желательно с момента нажатия на педаль газа. На практике одни автомобили уже с низких оборотов (с низов) ведут себя достаточно резво, другие напротив предпочитают лишь высокие обороты, а на низах показывают вялую динамику.
Так у многих возникает масса вопросов, когда они с авто с бензиновым мотором мощностью 105-120 л.с. пересаживаются на 70-80 – сильный дизель, то последний с легкостью обходит машину с бензиновым мотором. Как такое может быть?
Связано это с величиной тяги на ведущих колесах, которая различна для этих двух автомобилей. Величина тяги напрямую зависит от произведения таких показателей как, величины крутящего момента, передаточного числа трансмиссии, ее КПД и радиуса качения колеса.
Как создается крутящий момент в двигателе
В двигателе нет метровых рычагов и грузов, и их заменяет кривошипно-шатунный механизм с поршнями. Крутящий момент в двигателе образуется за счет сгорания топливо — воздушной смеси, которая расширяясь в объеме с усилием толкает поршень вниз. Поршень в свою очередь через шатун передает давление на шейку коленчатого вала. В характеристике двигателя нет значения плеча, но есть величина хода поршня (двойное значение радиуса кривошипа коленвала).
Для любого мотора крутящий момент рассчитывается следующим образом. Когда поршень с усилием 200 кг двигает шатун на плечо 5 см, появляется крутящий момент 10 кГс или 98,1Нм. В данном случает для увеличения крутящего момента нужно либо увеличить радиус кривошипа, или же увеличить давление расширяющихся газов на поршень.
До определенной величины можно увеличить радиус кривошипа, но будут расти и размеры блока цилиндров как в ширину, так и в высоту и увеличивать радиус до бесконечности невозможно. Да и конструкцию двигателя придется значительно упрочнять, так как будут нарастать силы инерции и другие отрицательные факторы. Следовательно, у разработчиков моторов остался второй вариант – нарастить силу, с которой поршень передает усилие для прокручивания коленвала. Для этих целей в камере сгорания нужно сжечь больше горючей смеси и к тому же более качественно. Для этого меняют величину и конфигурацию камеры сгорания, делают «вытеснители» на головках поршней и повышают степень сжатия.
Однако максимальный крутящий момент доступен не на всех оборотах мотора и у различных двигателей пик момента достигается на различных режимах. Одни моторы выдают его в диапазоне 1800- 3000 об/мин, другие на 3000-4500 об/мин. Это зависит от конструкции впускного коллектора и фаз газораспределения, когда эффективное наполнение цилиндров рабочей смесью происходит при определенных оборотах.
Крутящий момент двигателя и мощность, на что влияют эти показатели?
В данной статье мы рассмотрим влияние мощности и крутящего момента двигателя на динамику автомобиля, а так же принцип расчета крутящего момента.
Итак, что представляет собой мощность двигателя и на что она влияет? Для большинства автолюбителей не секрет, что чем выше мощность автомобиля (принято измерять в лошадиных силах), тем большую максимальную скорость может развивать автомобиль. Но следует помнить, что мощность развиваемая двигателем автомобиля — величина непостоянная и имеет прямую зависимость от оборотов двигателя. Если понятным языком, то при обычной езде при оборотах двигателя до 3х-4х тысяч оборотов используются далеко не все лошадиные силы имеющиеся под капотом. Т.к. пик максимальной мощности (указанной в паспорте автомобиля), на большинстве бензиновых двигателей достигается при 5500-6500 оборотов/минуту а у дизельных двигателей и вовсе при 3000-4000 об/мин. И почему то так сложилось, что в авто мире стало принятым брать за основную величину характеризующую динамические показатели автомобиля именно лошадиные силы.
И если с мощностью более менее понятно, то когда разговор заходит за крутящий момент двигателя, начинается полная неразбериха.
Давайте представим простую дорожную ситуацию, когда на небольших оборотах двигателя (2000-2500об/мин) требуется резко ускориться, например для обгона. Вот здесь как раз и вступает в силу крутящий момент и если он невелик, то при нажатии на педаль газа мы… ждем, пока автомобиль не наберет нужные обороты для динамичного ускорения. В случае же с большим показателем крутящего момента (на большинстве дизельных двигателей) динамичное ускорение при нажатии на педаль происходит незамедлительно.
Сам же крутящий момент двигателя представляет собой приложение силы на плечо рычага. Производимая сила измеряется в ньютонах, а рычаг в метрах. Отсюда и значение характеризующее крутящий момент – НюьтонМетры (Нм). Величина крутящего момента в 1Нм – означает, что сила в один Ньютон, приложена к рычагу имеющему плечо в 1 метр. В ДВС в роли рычага выступает кривошипно-шатунный механизм. Соответственно, чем более сильное толкающее воздействие оказывает на поршень воспламеняющая смесь в цилиндре, тем выше крутящий момент. В этом то как раз и кроется загадка более высокого крутящего момента дизельных двигателей в сравнении с бензиновыми. Т.к. бензиновые двигатели имеют степень сжатия в цилиндре – 9-12 Атмосфер, а дизельные 16-20 Атмосфер. Кстати моторы оснащенные нагнетателем (турбиной) обладают в первую очередь значительно более высоким крутящим моментом, т.к. турбина позволяет за счет нагнетания значительно большего количества смеси в цилиндр увеличить силу воздействия воспламеняющейся смеси на поршень.
Итак мы выяснили, что момент рождается за счет толкающей силы воздействующей на поршень, который в свою очередь передавая силу через шатун на коленвал и преобразует эту силу в крутящий момент. Суть этого процесса такова, что чем выше крутящий момент двигателя, тем быстрее двигатель набирает обороты под нагрузкой. Исходя из этого несложно понять, что именно от крутящего момента зависит динамика разгона.
Крутящий момент так же как и мощность имеет максимальные значения при конкретных оборотах двигателя. Но в данном случае более важным является не столько сама величина крутящего момента, сколько показатель оборотов, при которых момент достигается. Отсюда и разделение предпочтений автовладельцев между типами двигателей (бензиновый или дизельный).
Важно помнить, что бОльший объем двигателя так же способствует бОльшему крутящему моменту и соответственно более уверенной динамике ускорения.
Генри Форд говорил: «лошадиные силы продают автомобиль, а крутящий момент выигрывает гонки».
Мощность двигателя и крутящий момент
Двигатель внутреннего сгорания (ДВС) это устройство, в котором химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу.
Возгорание топлива в цилиндре (6) приводит к перемещению поршня (7), что, в свою очередь, приводит к проворачиванию коленчатого вала.
Циклы расширения и сжатия в цилиндрах приводят в действие кривошипно-шатунный механизм, который, в свою очередь, преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
Из чего состоит двигатель и как он работает:
Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).
И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:
Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке.
Чем выше мощность, тем большую скорость развивает авто
Мощность — это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.
Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.
Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.
График мощности для дизельного двигателя:
Крутящий момент характеризует способность ускоряться и преодолевать препятствия
Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.
Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.
На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.
Для большего практического понимания важности крутящего момента приведем несколько примеров на гипотетическом двигателе.
Даже без учета максимальной мощности, по графику, отражающему крутящий момент, можно сделать некоторые выводы. Разделим количество оборотов коленчатого вала на три части — это будут низкие обороты, средние и высокие.
На графике слева представлен вариант двигателя, который имеет высокий крутящий момент на низких оборотах (что равносильно высокому крутящему моменту на малых скоростях) — с таким двигателем хорошо ездить по бездорожью — он «вытянет» из любой трясины. На графике справа — двигатель, у которого высокий крутящий момент на средних оборотах (средних скоростях) — этот двигатель рассчитан для использования в городе — он позволяет достаточно резво ускоряться от светофора до светофора.
Следующий график характеризует двигатель, который обеспечивает хорошее ускорение даже на высоких скоростях — с таким двигателем комфортно на трассе. Замыкает графики универсальный двигатель — с широкой полкой — такой двигатель и из болота вытянет, и в городе позволяет хорошо ускоряться, и на трассе.
Крутящий момент отвечает за способность ускоряться и преодолевать препятствия,
мощность ответственна за максимальную скорость автомобиля,
а обороты двигателя все усложняют, так как каждому значению оборотов соответствует свое значение мощности и крутящего момента.
А вцелом все выглядит так:
— высокий крутящий момент на низких оборотах дает автомобилю тягу для передвижения по бездорожью (таким распределением сил могут похвастать дизельные двигатели). При этом мощность может стать уже вторичным параметром — вспомним, хотя бы, трактор Т25 с его 25 л.с.;
— высокий крутящий момент (а лучше — «полка крутящего момента) на средних и высоких оборотах дает возможность резко ускоряться в городском потоке или на трассе;
— высокая мощность двигателя обеспечивает высокую максимальную скорость;
— низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
Интересная познaвательная статья для любителей ездить на автомобилях с дизельным двигателем.
Лошадиные силы решают всё – такой вывод можно сделать, читая иные автомобильные издания, а также рекламные буклеты и техпаспорта. Так ли это? Зачем тогда в технических характеристиках указывают еще и крутящий момент?
Что определяют ньютон-метры? Что важнее – «лошади» или «ньютоны»?
ТЕОРИЯ
Для начала стоит разобраться с определениями. Вспоминаем школьный учебник физики. Крутящий момент
– это произведение силы на плечо рычага, к которому она приложена, Мкр = F х L. Сила измеряется в ньютонах, рычаг – в метрах. 1 Нм – крутящий момент, который создает сила в 1 Н, приложенная к концу рычага длиной 1 м.
В двигателе внутреннего сгорания роль рычага исполняет кривошип коленвала. Сила, рождаемая при сгорании топлива, действует на поршень, через который и создает крутящий момент. Выходит, что главная характеристика двигателя – величина крутящего момента на коленчатом валу. Понятно, что момент создается не постоянно, а только в период действия силы – то есть, только во время рабочего хода.
Разберемся теперь с мощностью. Все там же – в школьном пособии и про нее сказано предельно ясно. Мощность – это работа, совершенная в единицу времени. Формула банальная – Р = A/t. А так как работу в двигателе совершает именно та сила, которая создает крутящий момент, то мощность, говоря простыми словами, показывает, сколько раз в единицу времени двигатель создает крутящий момент. Не надо быть семи пядей во лбу, чтобы понять – количество «крутящих моментов», то есть мощность, зависит от количества оборотов двигателя. Чтобы нам было уже совсем просто, физики-математики напряглись и вывели наглядную формулу: P = Mкр*n/9549, где Mкр – крутящий момент двигателя (Нм), n – обороты коленвала двигателя (об./мин.). (Мощность получается в киловаттах. Чтобы преобразить ее в «скакунов», умножаем результат на 1,36).
Вроде бы с печкой все понятно. Попробуем от нее станцевать. На что влияет мощность, а на что – крутящий момент? Начнем с мощности. Мощность двигателя при движении автомобиля расходуется на преодоление различных сил сопротивления – это силы трения в трансмиссии и качения колес, силы аэродинамического сопротивления и т.д. Чем больше мощность, тем большее сопротивление автомобиль может преодолеть и большей скорости достичь. Повторимся, мощность мотора – величина не постоянная, а зависящая, прежде всего, от оборотов двигателя. Рядом со значениями максимальной мощности всегда указываются обороты, на которых она достигается. На других оборотах мощность иная – более низкая. Какая именно – можно узнать, взглянув на график внешних скоростных характеристик того или иного мотора. Важно другое – при разгоне двигатель не развивает оборотов максимальной мощности сразу (во всяком случае в обычных условиях). Машина стартует обычно с оборотов чуть выше холостого хода. Поэтому, чтобы мобилизовать весь «табун», мотору нужно время на раскрутку. Вот здесь-то и играет решающую роль крутящий момент. Именно от него зависит время достижения двигателем максимальной мощности, а значит и вожделенная динамика разгона. И получается, что забытые некоторыми ньютон-метры значат не меньше, чем хваленые лошадиные силы.
Противостояние «л.с. – Нм»
логично выливается в противостояние «бензин – дизель». Серийные бензиновые двигатели развивают не самый большой крутящий момент. К тому же максимального значения он достигает только на средних оборотах (обычно 3000-4000). Зато эти моторы могут раскручиваться до 7-8 тыс. об./мин., что позволяет им развивать довольно большую мощность. Ведь согласно приведенной выше формуле, мощность численно от оборотов зависит гораздо больше, чем от момента.
По этой же причине тихоходные дизели (развивают не более 5 000 об./мин.), обладая внушительным моментом, доступным практически с самых «низов», в максимальной мощности проигрывают бензиновым.
Однако мощность важна не только максимальная. Как уже было сказано, мощность, которую развивает двигатель на оборотах ниже предельных, как правило, так же далека от максимальной заявленной. Ключом к пониманию характера любого мотора являются кривые его характеристик: мощности и момента.
Приводим графики двух двигателей марки Mercedes-Benz. Один – объемом 1,8 л, дизельный (с турбонаддувом). Другой – двухлитровый бензиновый. Заявленные мощности – 109 л.с. и 136 л.с. соответственно. Моменты – 250 и 185 Нм. Мы сравнили мощность этих моторов во всем диапазоне оборотов, а не только максимальную. И получилось, что от 1000 до 4000 об./мин. (а это практически весь «городской» спектр) дизель мощнее «бензина» максимум на 34 л.с., а в среднем – на 17. О превосходстве в моменте даже говорить не стоит.
Ради интереса мы сравнили также характеристики аналогичных двухлитровых моторов Volkswagen: 2,0 TDI (140 л.с. и 320 Нм) и 2,0 FSI (150 л.с. и 200 Нм). Результат тот же – выигрыш в максимальной мощности оборачивается проигрышем до отметки в 4 500 об./мин. Интересная картина.
Измерение мощности в лошадиных силах широко распространено только в автомобильной сфере. Причина – неоднозначное определение этой единицы. Мерить мощь моторов по поголовью рысаков впервые предложил Джеймс Уатт (в специальной литературе для этих целей используют его фамилию). Он предположил, что лошадь может поднимать 33 000 фунтов груза (14 968,55 кг) со скоростью 1 фут (30 см) в минуту, что равняется 745,7 Вт. Именно эту единицу до сих пор применяют в Англии (обозначение BHP). В остальных европейских странах лошадиная сила определяется как 735,49875 Вт и обозначается pferdestarke – PS (нем.), cheval – ch (фр.) или просто – л.с.
Наращивать мощность моторов можно по-разному. Самый «примитивный» способ – увеличение рабочего объема – слава богу, свое, похоже, отжил. Теперь в чести более продвинутые методы.
Увеличение максимального числа оборотов позволяет поднять мощность без серьезного изменения крутящего момента. Пример – BMW M5/M6, двигатель которых крутится до 8250 об./мин.
Турбо- и механический наддув резко повышают крутящий момент мотора. К примеру, двигатель 2,0 FSI (VW, Audi) выдает 150 л.с. и 200 Нм. Он же, но с турбиной (2,0 TFSI) – 200 л.с., 280 Нм.
Изменение фаз газораспределения (VTEC, VVTi, bi-VANOS) позволяет поднять момент и сдвинуть его в зону «нужных» оборотов. Самый изощренный способ – возможность изменения степени сжатия. Так, на 1,6-литровом турбо-двигателе SAAB, благодаря подвижной головке блока, она варьируется от 8:1 до 14:1. Результат – 308 Нм и 225 л.с.
Понять, что значат на практике «лишние» ньютон-метры и лошадиные силы, мы решили на примере двух новейших Volkswagen Passat с упомянутыми двухлитровыми моторами – турбо-дизелем и бензиновым атмосферником. У первого – 140 л.с. и 320 Нм, у второго – 150 л.с. и 200 Нм. Для кристальной чистоты эксперимента обе машины были с шестиступенчатыми механическими коробками (разницу передаточных отношений главной пары в данном случае считаем несущественной).
На дизельном Passat мы уже ездили, а потому хорошо знакомы с его неординарной натурой. На холостых и малых оборотах мотор не проявляет особого энтузиазма, но по достижении 1750 об./мин. (уже с этой отметки водителю доступны все 320 Нм момента) в корне преображается. На кривой хорошо видно, что амплитуда крутящего момента составляет 110 Нм, больше трети максимального значения! Эту разницу двигатель успевает преодолеть в промежутке между 1000 и 2000 об./мин. Уже под конец второй тысячи мотор мощно бросает Passat вперед. Ускорение не ослабевает вплоть до максимальных 4500 об./мин., следует переключение – и вновь изобилие тяги до самого верха. Еще переключение – все повторяется. Словно невидимый силач-великан тащит машину тросом, потом перехватывает руки и тащит снова – бурный разгон идет на каждой передаче, даже на пятой и шестой он остается впечатляющим. Если не мешкать при переключениях и не выпадать из диапазона 2000-4000 оборотов (а это не сложно благодаря исключительно точному приводу переключения), то дизельный Passat позволяет перемещаться в пространстве очень и очень интенсивно. Спортивно. Единственный минус, он же плюс – при разгоне «в пол» стрелка тахометра в мгновения пролетает короткую шкалу. Только успевай работать ручкой КПП.
Пора пересаживаться в бензиновую машину. Ее характер спокойнее. Passat реагирует на действия акселератора точно и отзывчиво. Мотор тянет уверенно с самого низа и до максимальных оборотов, но без подхватов и волнующих ускорений. Посмотрите, разница между моментом на холостом ходу и максимальным – всего 50 Нм, так что подхватам взяться просто неоткуда. Но управляться с такой динамикой удобнее – передачи длинные, с прогнозируемой тягой во всем рабочем диапазоне. Пока мотор перегоняет стрелку тахометра из левого нижнего угла в правый нижний, можно немного передохнуть, не надо строчить рычагом коробки. Ага, есть 6 500 – переключаемся. Но эмоции, эмоции от разгона: Они есть, но не такие, как в случае с дизелем. Здесь уже не чудо-силач тянет машину, а какой-то механический робот-ускоритель, с постоянным, точно тарированным усилием. Теперь самое сладкое. Машины стоят бок о бок на одной линии. Напомним, что у бензинового Passat превосходство в максимальной мощности на 10 л.с. Но проявляется оно только после 4 500 оборотов. А у дизеля превосходство в моменте, которое проявляется во всем диапазоне. Ну, любители дрэг-рэйсинга, ваши ставки?
Синхронный старт. Первые секунды машины идут ноздря в ноздрю. Затем дизель уступает четверть корпуса – мотор быстро выкрутился, надо менять передачу. Из-за более редких переключений бензиновый Passat выходит вперед почти на корпус. С набором скорости этот отрыв уменьшается. По паспорту в упражнении «до сотни» дизель проигрывает своему противнику всего 0,4 секунды. Это разница в пределах водительской погрешности. И максимальная скорость меньше лишь чуть-чуть – 209 км/ч против 213.
Но это на зачетной прямой. Там водители бросают сцепление, уже раскрутив моторы. А в городе, чтобы угнаться за дизелем, «бензину» приходится постоянно держать обороты близко к красной зоне. Вспомните графики – там, где дизельный двигатель уже почти набрал свои 140 л.с. (3500 об./мин.), у бензинового под педалью пока только сотня. Чтобы набрать столько же, ему нужно еще 1 500 оборотов. При этом первый набирает обороты максимальной мощности почти моментально (вот оно, превосходство момента!), а второй – значительно дольше. И на шоссе, двигаясь со скоростью 120 км/ч, «дизелю» для ускорения не потребуется переключение, а бензиновый Passat попросит передачу пониже.
В общем, на практике все получилось так, как предсказывала теория. Максимальная мощность двигателя прежде всего определяет максимальную скорость автомобиля. А крутящий момент – быстроту достижения мотором этой максимальной мощности. Таким образом, при сопоставимой мощности пресловутый разгон до «сотни» будет даваться более «моментному» двигателю меньшей кровью – он требует меньшей раскрутки перед стартом машины. В «мирных» условиях повседневного вождения это весомый фактор. Но и мощность крайне важна: момент не может разгонять автомобиль бесконечно – только до определенной скорости, которая, естественно, ограничивается мощностью. Вот и получается, что «лошади» и «ньютоны» тесно взаимосвязаны, и разить ими по отдельности оппонента в споре о моторах – дилетантство.
Как бы то ни было, практический итог этого противостояния противоречит общепринятому автолюбительскому мировоззрению. Мы однозначно признаем победителем турбо-дизель. Именно он больше подойдет водителям, ценящим динамику и азарт разгона. К тому же на его стороне экономичность и дешевизна топлива. А педанты, оценивающие превосходство динамики по голым цифрам, и любители ровных характеристик найдут свою правду в более привычном пока для России «бензине». И еще – у него правильный звук, если для кого-то это имеет большое значение.
Между прочим, результат нашего небольшого исследования отвечает мировым тенденциям автопрома – современные турбо-дизели, догнав бензиновые моторы по мощности, склонили чашу весов в свою сторону, благодаря большему моменту. Так что от солярки россиянам, похоже, все равно не уйти.
В выводе напишим старую поговорку: Покупаем лошадиные силы, а ездим на моменте.