Признаки классификации системы управления машиной

Содержание

Классификация систем автоматического управления

Совокупность автоматического управляющего устройства и объекта управления, связанных и взаимодействующих между собой в соответствии с алгоритмом управления, называют системой автоматического управления (САУ).

Системы автоматического управления используются для облегчения производственных задач и снижения связанных с этим затрат на постоянный контроль, который требует наблюдения изменений переменной во время производственных процессов, которые становятся все более сложными.

Системы управления в большом количестве используются во всех отраслях промышленности, таких как контроль качества производимой продукции, автоматические сборочные линии, управление станками и инструментами, космическая техника, системы сигнализации, транспортные системы, управление компьютерами, робототехника, управление запасами и многое другое.

Важность внедрения систем автоматического управления заключается в том, что они позволяют снизить затраты, связанные с производством товаров и услуг. Они также улучшают качество и объемы производства на промышленных предприятиях, экономя время и оптимизируя управление процессами.

Классифицировать системы автоматического управления можно по методу управления и функциональному признаку. По методу управления все системы делятся на два больших класса: обыкновенные (несамонастраивающиеся) и самонастраивающиеся (адаптивные).

1638349721 avtomatika1

Разомкнутые системы автоматического управления в свою очередь делят на системы автоматического жесткого управления (САЖУ) и системы управления по возмущению.

У первых систем регулятор воздействует на объект управления независимо от полученного результата, т. е. значения регулируемой величины и внешнего возмущения. Системы управления по возмущению работают по принципу, когда управляющее воздействие вырабатывается в зависимости от внешнего возмущения, оказывающего влияние на объект управления.

В качестве примера можно рассмотреть систему отопления литейного или термического цеха. В этом случае расход горячей воды в теплотрассе цеха зависит от внешних погодных условий. Чем холоднее на улице, тем больше подается горячей воды в батареи отопления, и наоборот.

Системы автоматического регулирования предназначены для решения трех задач: стабилизации регулируемой величины (стабилизирующая САР), изменения регулируемой величины по известной (программная САР) или неизвестной (следящая САР) программам.

1638349631 avtomatika2

В стабилизирующих САР заданное значение регулируемой величины постоянно. Примером такой системы может служить система регулирования температуры в рабочем пространстве термической печи. В программных САР значение регулируемой величины изменяется во времени по заранее разработанной (известной) программе.

В следящих системах заданное значение регулируемой величины изменяется во времени по заранее неизвестной программе. Следящие и программные САР отличаются от стабилизирующих принципом обработки задающего сигнала.

Наиболее типичным примером следящего регулирования является автоматическое поддержание заданного соотношения между расходами топлива и воздуха при регулировании процесса горения в топливных плавильных и нагревательных печах.

1407246752 1

Системы автоматического управления: а — разомкнутая, б — разомкнутая по отклонению, в — замкнутая, г — комбинированная, д — самонастраивающаяся, Р — регулятор, ОУ — объект управления, ЭС — элемент сравнения, УАВ — устройство анализа задающего воздействия: ВУ — вычислительное устройство, ИУ — исполнительное устройство, АУУ — автоматическое управляющее устройство, УАО — устройство анализа объекта управления.

Комбинированные системы сочетают в себе достоинства систем управления по отклонению и по возмущению, что повышает точность управления. Действие неучтенных возмущений в комбинированных системах компенсируется или ослабляется управлением по отклонению.

Самонастраивающиеся (адаптивные) системы можно разделить на три подкласса: экстремальные системы, системы с самонастройкой параметров и системы с самонастройкой структуры.

Системами экстремального регулирования называют системы стабилизирующего, следящего или программного управления, у которых настройка, программа или закон воспроизведения автоматически изменяются в зависимости от изменения внешних условий или внутреннего состояния системы с целью создания наивыгоднейшего (оптимального) режима работы объекта управления.

В таких системах вместо постоянной настройки или программы устанавливается устройство автоматического поиска, которое проводит анализ какой-либо характеристики объекта (коэффициента полезного действия, производительности, экономичности и т. п.) и в зависимости от полученного результата подает в управляющее устройство требуемое значение регулируемой величины так, чтобы данная характеристика получила экстремальное значение при непрерывном изменении различных возмущающих воздействий, оказывающих влияние на условия работы системы.

В системах с самонастройкой параметров при изменении внешних условий или характеристик объекта регулирования происходит автоматическое (не по заранее заданной программе) изменение варьируемых параметров управляющего устройства с целью обеспечения устойчивой работы системы и поддержания регулируемой величины на заданном или оптимальном уровне.

В системах с самонастройкой структуры при изменении внешних условий и характеристик объекта управления происходит переключение элементов в схеме соединений или введение в нее новых элементов. Целью таких изменений (отбора) структуры является достижение лучшего решения задачи управления.

Отбор структуры осуществляется путем автоматического поиска с применением вычислительных и логических операций. Такие системы должны не только приспосабливаться ко всем изменениям внешних условий и характеристик объекта, но и функционировать нормально даже при наличии неполадок или отказов отдельных элементов, создавая новые цепи взамен нарушенных. Системы с самонастройкой структуры можно заставить самосовершенствоваться, «приобретать опыт» путем быстрого опробования нескольких вариантов, отбора и «запоминания» лучшего из них.

Согласно классификации по функциональному признаку все автоматические системы управления подразделяют на четыре класса :

системы для координации работы механизмов,

системы регулирования параметров технологических процессов,

системы автоматического контроля,

системы автоматической защиты и блокировки.

1638349676 avtomatika3

Системы автоматического регулирования (САР) технологических процессов обеспечивают поддержание регулируемой величины на заданном уровне или изменение ее по заданной программе.

Системы автоматического контроля (САК) содержат средства и методы для получения информации о текущих значениях параметров технологических процессов (температуры, давления, запыленности или загазованности воздуха и др.) без непосредственного участия человека.

Системы автоматической защиты (САЗ) и блокировки (САБ) предотвращают возникновение, аварийных ситуаций в работе оборудования при установившемся режиме.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Классификация и уровни автоматизированных систем

Автоматизированные системы сегодня все больше применяются в разнообразных сферах деятельности. Высокую актуальность приобретает возможность внедрения автоматизированных систем управления для малых и больших производств.

8fb24a117ba42ed5733e

Общие понятия автоматизированной системы

Все функции автоматизированных систем направлены на достижения определенной цели посредством определенных действий и мероприятий. Основополагающая цель АС – наиболее эффективное использование возможностей и функций объекта управления.

Выделяют следующие цели:

Классификация автоматизированных систем

Основные выделяемые признаки, по которым осуществляется классификация автоматизированных систем:

Категории автоматизированных систем

Классификация структур автоматизированных систем в промышленной сфере разделяется на такие категории:

Децентрализованная структура. Система с данной структурой применяется для автоматизации независимых объектов управления и является наиболее эффективной для этих целей. В системе имеется комплекс независимых друг от друга систем с индивидуальным набором алгоритмов и информации. Каждое выполняемое действие осуществляется исключительно для своего объекта управления.

Централизованная структура. Реализует все необходимые процессы управления в единой системе, осуществляющей сбор и структурирование информации об объектах управления. На основании полученной информации, система делает выводы и принимает соответствующее решение, которое направлено на достижение первоначальной цели.

Централизованная рассредоточенная структура. Структура функционирует по принципам централизованного способа управления. На каждый объект управления вырабатываются управляющие воздействия на основании данных обо всех объектах. Некоторые устройства могут быть общими для каналов.

Алгоритм управления основывается на комплексе общих алгоритмов управления, реализующиеся с помощью набора связанных объектов управления. При работе каждый орган управления принимает и обрабатывает данные, а также передает управляющие сигналы на объекты. Достоинством структуры является не столь строгие требования относительно производительности центров обработки и управления, не причиняя ущерба процессу управления.

Иерархическая структура. В связи с возрастанием количества поставленных задач в управлении сложными системами значительно усложняются и отрабатывающиеся алгоритмы. В результате чего появляется необходимость создания иерархической структуры. Подобное формирование значительно уменьшает трудности по управлению каждым объектом, однако, требуется согласовать принимаемые ими решения.

Типы автоматизированных систем

Автоматизированные информационные системы

Автоматизированная информационная система – это комплекс аппаратных и программных средств, необходимых для реализации функций хранения данных и управления ими, а также для вычислительных операций.

Главная цель АИС – это хранение данных, обеспечение качественного поиска и передачи данных в зависимости от запросов для наибольшего соответствия запросов пользователей.

Выделяют наиболее важные принципы автоматизации процессов:

Классификация автоматизированных информационных систем имеет следующую структуру:

Классификация по степени автоматизации

Информационные системы классифицируются также по степени автоматизации проводимых операций:

Ручные – в них отсутствуют современные средства для обработки информации, и все операции осуществляются человеком в ручном режиме.

Автоматические – абсолютно все операции по обработке информации осуществляются с применением технических средств без участия человека.

Автоматизированные информационные системы производят операции как с помощью технических средств, так и с помощью человека, однако, основная роль передается компьютеру. ИС классифицируются по степени автоматизации, а также по сфере применения и характеру деятельности.

Уровни автоматизированных систем

Выделяют три уровня автоматизированных систем управления:

Нижний уровень. Оборудование. На этом уровне внимание отводится датчикам, измерительным и исполнительным устройствам. Здесь производится согласование сигналов с входами устройств и команд с исполнительными устройствами.

Средний уровень. Уровень контроллеров. Контроллеры получают данные с измерительного оборудования, а после передает сигналы для команд управления, в зависимости от запрограммированного алгоритма.

Верхний уровень – промышленных серверов и диспетчерских станций. Здесь осуществляется контроль производства. Для этого обеспечивается связь с низшими уровнями, сбор информации и мониторинг протекания технологического процесса. Этот уровень взаимодействует с человеком. Человек здесь производит контроль оборудования с помощью человеко-машинного интерфейса: графические панели, мониторы. Контроль за системой машин обеспечивает SCADA система, которая устанавливается на диспетчерские компьютеры. Данная программа собирает информацию, архивирует ее и визуализирует. Программа самостоятельно сравнивает полученные данные с заданными показателями, а в случае несоответствия проводит оповещение человека-оператора об ошибке. Программа производит запись всех операций, в том числе и действия оператора, которые необходимы в случае нештатной ситуации. Так обеспечивается контроль ответственности оператора.

Существуют также критичные автоматизированные системы. Это системы, которые реализуют различные информационные процессы в критичных системах управления. Критичность представляет собой вероятную опасность нарушения их стабильности, а отказ системы чреват значительными экономическими, политическими или другими ущербами.

Что же относится к критичным автоматизированным процессам? К критичным относят следующие системы управления: опасными производствами, объектами атомной отрасли, управления космическими полетами, железнодорожным движением, воздушным движением, управление в военных и политических сферах. Почему они критичны? Потому что решаемые ими задачи имеют критичный характер: использование информации с ограниченным доступом, использование биологических и электронных средств обработки информации, сложность технологических процессов. Следовательно, информационные автоматизированные системы становятся элементом критичных систем управления и в результате этого, получили принадлежность к этому классу.

Выводы

Подводя итоги, можно отметить важность автоматизации систем управления в различных сферах. На сегодняшний день внедрение подобных систем обеспечивает более качественное управление производством, сводя к минимуму участие человека в этих процессах и исключая тем самым, ошибки, связанные с человеческим фактором. Развитие и разработка автоматизированных систем управления дает возможность улучшать многие сферы: производство, экономику, энергетику, транспортную сферу и другие.

Источник

Введение в теорию автоматического управления. Основные понятия теории управления техническим системами

Публикую первую главу лекций по теории автоматического управления, после которых ваша жизнь уже никогда не будет прежней.

Лекции по курсу «Управление Техническими Системами», читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки», факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность.

Данные лекции только готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика привествуется.

image loader

1. Основные понятия теории управления техническими системами

1.1. Цели, принципы управления, виды систем управления, основные определения, примеры

Развитие и совершенствование промышленного производства (энергетики, транспорта, машиностроения, космической техники и т.д.) требует непрерывного увеличения производительности машин и агрегатов, повышения качества продукции, снижения себестоимости и, особенно в атомной энергетике, резкого повышения безопасности (ядерной, радиационной и т.д.) эксплуатации АЭС и ядерных установок.

Реализация поставленных целей невозможна без внедрения современных систем управления, включая как автоматизированные (с участием человека-оператора), так и автоматические (без участия человека-оператора) системы управления (СУ).

Определение: Управление – это такая организация того или иного технологического процесса, которая обеспечивает достижение поставленной цели.

Теория управления является разделом современной науки и техники. Она базируется (основывается) как на фундаментальных (общенаучных) дисциплинах (например, математика, физика, химия и т.д.), так и на прикладных дисциплинах (электроника, микропроцессорная техника, программирование и т.д.).

Любой процесс управления (автоматического) состоит из следующих основных этапов (элементов):

Для реализации Процесса Управления система управления (СУ) должна иметь:

Определение: Если система управления (СУ) содержит все перечисленные выше части, то она является замкнутой.

Определение: Управление техническим объектом с использованием информации о результатах управления называется принципом обратной связи.

Схематично такая система управления может быть представлена в виде:

image loader
Рис. 1.1.1 — Структура системы управления (СУ)

Если система управления (СУ) имеет структурную схему, вид которой соответствует рис. 1.1.1, и функционирует (работает) без участия человека (оператора), то она называется системой автоматического управления (САУ).

Если СУ функционирует с участием человека (оператора), то она называется автоматизированной СУ.

Если Управление обеспечивает заданный закон изменения объекта во времени независимо от результатов управления, то такое управление совершается по разомкнутому циклу, а само управление называется программным управлением.

К системам, работающим по разомкнутому циклу, относятся промышленные автоматы (конвейерные линии, роторные линии и т.д.), станки с числовым программным управлением (ЧПУ): см. пример на рис. 1.1.2.

image loader

Задающее устройство может быть, например, и “копиром”.

Поскольку в данном примере нет датчиков (измерителей), контролирующих изготавливаемую деталь, то если, например, резец был установлен неправильно или сломался, то поставленная цель (изготовление детали) не может быть достигнута (реализована). Обычно в системах подобного типа необходим выходной контроль, который будет только фиксировать отклонение размеров и формы детали от желаемой.

Автоматические системы управления подразделяются на 3 типа:

САР и СС являются подмножествами САУ ==> d36b6365f27d99a67f4ba033b986507b.

Определение: Автоматическая система управления, обеспечивающая постоянство какой-либо физической величины (группы величин) в объекте управления называется системой автоматического регулирования (САР).

Системы автоматического регулирования (САР) — наиболее распространенный тип систем автоматического управления.

Первый в мире автоматический регулятор (18-е столетие) – регулятор Уатта. Данная схема (см. рис. 1.1.3) реализована Уаттом в Англии для поддержания постоянной скорости вращения колеса паровой машины и, соответственно, для поддержания постоянства скорости вращения (движения) шкива (ремня) трансмиссии.

В данной схеме чувствительными элементами (измерительными датчиками) являются “грузы” (сферы). «Грузы» (сферы) также “заставляют” перемещаться коромысло и затем задвижку. Поэтому данную систему можно отнести к системе прямого регулирования, а регулятор — к регулятору прямого действия, так как он одновременно выполняет функции и “измерителя” и “регулятора”.

В регуляторах прямого действия дополнительного источника энергии для перемещения регулирующего органа не требуется.

image loader

В системах непрямого регулирования необходимо присутствие (наличие) усилителя (например, мощности), дополнительного исполнительного механизма, содержащего, например, электродвигатель, серводвигатель, гидропривод и т.д.

Примером САУ (системы автоматического управления), в полном смысле этого определения, может служить система управления, обеспечивающая вывод ракеты на орбиту, где управляемой величиной может быть, например, угол между осью ракеты и нормалью к Земле ==> см. рис. 1.1.4.а и рис. 1.1.4.б

image loader

1.2. Структура систем управления: простые и многомерные системы

В теории управления техническими системами часто бывает удобно систему разделить на набор звеньев, соединенных в сетевые структуры. В простейшем случае система содержит одно звено, на вход которого подается входной воздействие (вход), на входе получается отклик системы (выход).

В теории Управления Техническими Системам используют 2 основных способа представления звеньев систем управления:

— в переменных “вход-выход”;

— в переменных состояния (более подробно см. разделы 6…7).

Представление в переменных “вход-выход” обычно используется для описания относительно простых систем, имеющих один “вход” (одно управляющее воздействие) и один “выход” (одна регулируемая величина, см. рисунок 1.2.1).

image loader

Обычно такое описание используется для технически несложных САУ (систем автоматического управления).

В последнее время широкое распространение имеет представление в переменных состояния, особенно для технически сложных систем, в том числе и для многомерных САУ. На рис. 1.2.2 приведено схематичное представление многомерной системы автоматического управления, где u1(t)…um(t) — управляющие воздействия (вектор управления), y1(t)…yp(t) — регулируемые параметры САУ (вектор выхода).

image loader

Рассмотрим более детально структуру САУ, представленную в переменных “вход-выход” и имеющую один вход (входное или задающее, или управляющее воздействие) и один выход (выходное воздействие или управляемая (или регулируемая) переменная).

Предположим, что структурная схема такой САУ состоит из некоторого числа элементов (звеньев). Группируя звенья по функциональному принципу (что звенья делают), структурную схему САУ можно привести к следующему типовому виду:

image loader
Рис. 1.2.3 — Структурная схема системы автоматического управления

Символом ε(t) или переменной ε(t) обозначается рассогласование (ошибка) на выходе сравнивающего устройства, которое может “работать” в режиме как простых сравнительных арифметических операций (чаще всего вычитание, реже сложение), так и более сложных сравнительных операций (процедур).

Задача системы управления состоит в том (если она устойчива), чтобы “работать” на уничтожение рассогласования (ошибки) ε(t), т.е. ==> ε(t) → 0.

Следует отметить, что на систему управления действуют как внешние воздействия (управляющее, возмущающее, помехи), так и внутренние помехи. Помеха отличается от воздействия стохастичностью (случайностью) своего существования, тогда как воздействие почти всегда детерминировано.

Для обозначения управляющего (задающего воздействие) будем использовать либо x(t), либо u(t).

1.3. Основные законы управления

Если вернуться к последнему рисунку (структурная схема САУ на рис. 1.2.3), то необходимо “расшифровать” роль, которую играет усилительно-преобразующее устройство (какие функции оно выполняет).

Если усилительно-преобразующее устройство (УПУ) выполняет только усиление (или ослабление) сигнала рассогласования ε(t), а именно: 195b252651583b58390c9435a9cf80f6, где 234756ba02fcf44c798e4e66aedb3efd– коэффициент пропорциональности (в частном случае 234756ba02fcf44c798e4e66aedb3efd= Const), то такой режим управления замкнутой САУ называется режимом пропорционального управления (П-управление).

Если УПУ выполняет формирование выходного сигнала ε1(t), пропорционального ошибке ε(t) и интегралу от ε(t), т.е. e4f01807aa7f7d72a04549314a2477c4, то такой режим управления называется пропорционально-интегрирующим (ПИ-управление). ==> 876cba13d81333f9a4a50f4b766b8e38, где b – коэффициент пропорциональности (в частном случае b = Const).

Обычно ПИ-управление используется для повышения точности управления (регулирования).

Если УПУ формирует выходной сигнал ε1(t), пропорциональный ошибке ε(t) и ее производной, то такой режим называется пропорционально-дифференцирующим (ПД-управление): ==> 21fe9b60a22949ed3ad4bab386327d5a

Обычно использование ПД-управления повышает быстродействие САУ

Если УПУ формирует выходной сигнал ε1(t), пропорциональный ошибке ε(t), ее производной, и интегралу от ошибки ==> 98b69f02236f9b48b1e50e8af3e00c43, то такой режим называетсято такой режим управления называется пропорционально-интегрально-дифференцирующим режимом управления (ПИД-управление).

ПИД-управление позволяет зачастую обеспечить “хорошую” точность управления при “хорошем” быстродействии

1.4. Классификация систем автоматического управления

1.4.1. Классификация по виду математического описания

По виду математического описания (уравнений динамики и статики) системы автоматического управления (САУ) подразделяются на линейные и нелинейные системы (САУ или САР).

Каждый “подкласс” (линейных и нелинейных) подразделяется на еще ряд “подклассов”. Например, линейные САУ (САР) имеют различия по виду математического описания.
Поскольку в этом семестре будут рассматриваться динамические свойства только линейных систем автоматического управления (регулирования), то ниже приведем классификацию по виду математического описания для линейных САУ (САР):

1) Линейные системы автоматического управления, описываемые в переменных «вход-выход» обыкновенными дифференциальными уравнениями (ОДУ) с постоянными коэффициентами:

e119bd7376ed8cc1ca2b2ee1ac079e92

d68f2e0674553a30fae4ea8e81560de3

где x(t) – входное воздействие; y(t) – выходное воздействие (регулируемая величина).

Если использовать операторную («компактную») форму записи линейного ОДУ, то уравнение (1.4.1) можно представить в следующем виде:

1356d82d0fb7938ba5b8a839c1d88a9b

где, p = d/dt — оператор дифференцирования; L(p), N(p) — соответствующие линейные дифференциальные операторы, которые равны:

4c9d7241451d347efc3fbf8f37a721e6

db8f26223c036ccd69fc3337bff8c2c8

2) Линейные системы автоматического управления, описываемые линейными обыкновенными дифференциальными уравнениями (ОДУ) с переменными (во времени) коэффициентами:

5f07e1ae7bf3e0f7e33e74c90aea85c8

37feb29b8fd7e4fa995ec42b24a4247b

В общем случае такие системы можно отнести и к классу нелинейных САУ (САР).

3) Линейные системы автоматического управления, описываемые линейными разностными уравнениями:

4356496bc2bfadab6770aa0b4fd18751

18dfb13c5d979e30a5142c571289adb6

где f(…) – линейная функция аргументов; k = 1, 2, 3… — целые числа; Δt – интервал квантования (интервал дискретизации).

Уравнение (1.4.4) можно представить в «компактной» форме записи:

a9426e2c6f607b59ce9951c3d0beb32e

Обычно такое описание линейных САУ (САР) используется в цифровых системах управления (с использованием ЭВМ).

4) Линейные системы автоматического управления с запаздыванием:

2f5fa958ec3807b32f88e2077172dd70

где L(p), N(p) — линейные дифференциальные операторы; τ — время запаздывания или постоянная запаздывания.

Если операторы L(p) и N(p) вырождаются (L(p) = 1; N(p) = 1), то уравнение (1.4.6) соответствует математическому описанию динамики звена идеального запаздывания:

077d20fa0dd3fc0d784a7ccd67942179

а графическая иллюстрация его свойств привдена на рис. 1.4.1

image loader

5) Линейные системы автоматического управления, описываемые линейными дифференциальными уравнения в частных производных. Нередко такие САУ называют распределенными системами управления. ==> «Абстрактный» пример такого описания:

b6d85ee6effa42969af00178036b9fcc

Система уравнений (1.4.7) описывает динамику линейно распределенной САУ, т.е. регулируемая величина зависит не только от времени, но и от одной пространственной координаты.
Если система управления представляет собой «пространственный» объект, то ==>

68c647cbf6b6794a88e0365a885b994a

где 029531d4f599e8a931bc9958e88d8b63зависит от времени и пространственных координат, определяемых радиусом-вектором af9514ca531fc8dfb090362e4ce933b2

6) САУ, описываемые системами ОДУ, или системами разностных уравнений, или системами уравнений в частных производных ==> и так далее…

Аналогичную классификацию можно предложить и для нелинейных САУ (САР)…

Для линейных систем выполеняются следующие требования:

Статической характеристикой называется зависимость выхода от величины входного воздействия в установившемся режиме (когда все переходные процессы затухли).

Для систем, описываемых линейными обыкновенными дифференциальными уравнениями с постоянными коэффициентами статическая характеристика получается из уравнения динамики (1.4.1) приравниванием нулю всех нестационарных членов ==>

b151913a572ed139d4fc9ecf8dd9d82e

На рис.1.4.2 представлены примеры линейной и нелинейных статических характеристик систем автоматического управления (регулирования).

image loader

Нелинейность членов, содержащих производные по времени в уравнениях динамики, может возникнуть при использовании нелинейных математических операций (*, /, 30c7e40bb7479ca209fc01acd59dca46, fa74628890598d74e287ba2b23423253, sin, ln и т.д.). Например, рассматривая уравнение динамики некоторой «абстрактной» САУ

ec7f4e6bf000eabe722194835bd648da

отметим, что в этом уравнении при линейной статической характеристики 3acf394ec456953c3d9de8e6a5f865c8второе и третье слагаемые (динамические члены) в левой части уравнения — нелинейные, поэтому САУ, описываемая подобным уравнением, является нелинейной в динамическом плане.

1.4.2. Классификация по характеру передаваемых сигналов

По характеру передаваемых сигналов системы автоматического управления (или регулирования) подразделяются:

Системой непрерывного действия называется такая САУ, в каждом из звеньев которой непрерывному изменению входного сигнала во времени соответствует непрерывное изменение выходного сигнала, при этом закон изменения выходного сигнала может быть произвольным. Чтобы САУ была непрерывной, необходимо, чтобы статические характеристики всех звеньев были непрерывными.

image loader

Системой релейного действия называется САУ, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина в некоторые моменты процесса управления меняется “скачком” в зависимости от величины входного сигнала. Статическая характеристика такого звена имеет точки разрыва или излома с разрывом.

image loader

Системой дискретного действия называется система, в которой хотя бы в одном звене при непрерывном изменении входной величины выходная величина имеет вид отдельных импульсов, появляющиеся через некоторый промежуток времени.

Звено, преобразующее непрерывный сигнал в дискретный сигнал, называется импульсным. Подобный вид передаваемых сигналов имеет место в САУ с ЭВМ или контроллером.

Наиболее часто реализуются следующие методы (алгоритмы) преобразования непрерывного входного сигнала в импульсный выходной сигнал:

На рис. 1.4.5 представлена графическая иллюстрация алгоритма амплитудно-импульсной модуляции (АИМ). В верхней части рис. представлена временная зависимость x(t) — сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис.). Длительность импульсов – одинакова и равна Δ. Амплитуда импульса на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе данного блока.

image loader

Данный метод импульсной модуляции был весьма распространен в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) в 70-х…80-х годах прошлого столетия.

На рис. 1.4.6 представлена графическая иллюстрация алгоритма широтно-импульсной модуляции (ШИМ). В верхней части рис. 1.14 представлена временная зависимость x(t) – сигнала на входе в импульсное звено. Выходной сигнал импульсного блока (звена) y(t) – последовательность прямоугольных импульсов, появляющихся с постоянным периодом квантования Δt (см. нижнюю часть рис. 1.14). Амплитуда всех импульсов – одинакова. Длительность импульса Δt на выходе блока пропорциональна соответствующей величине непрерывного сигнала x(t) на входе импульсного блока.

image loader

Данный метод импульсной модуляции в настоящее время является наиболее распространенным в электронно-измерительной аппаратуре систем управления и защиты (СУЗ) ядерных энергетических установок (ЯЭУ) и САУ других технических систем.

Завершая данный подраздел, необходимо заметить, что если характерные постоянные времени в других звеньях САУ (САР) существенно больше Δt (на порядки), то импульсная система может считаться непрерывной системой автоматического управления (при использовании как АИМ, так и ШИМ).

1.4.3. Классификация по характеру управления

По характеру процессов управления системы автоматического управления подразделяются на следующие типы:

Выходной стохастический сигнал характеризуется:

image loader

Кроме приведенных основных видов классификации систем управления, существуют и другие классификации. Например, классификация может проводиться по методу управления и основываться на взаимодействии с внешней средой и возможности адаптации САУ к изменению параметров окружающей среды. Системы делятся на два больших класса:

1) Обыкновенные (несамонастраивающиеся) СУ без адаптации; эти системы относятся к разряду простых, не изменяющих свою структуру в процессе управления. Они наиболее разработаны и широко применяются. Обыкновенные СУ подразделяются на три подкласса: разомкнутые, замкнутые и комбинированные системы управления.

2) Самонастраивающиеся (адаптивные) СУ. В этих системах при изменении внешних условий или характеристик объекта регулирования происходит автоматическое (заранее не заданное) изменение параметров управляющего устройства за счет изменения коэффициентов СУ, структуры СУ или даже введения новых элементов.

Другой пример классификации: по иерархическому признаку (одноуровневые, двухуровневые, многоуровневые).

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто