Тест по физике Тепловое движение 9 класс
Тест по физике Тепловое движение. Способы изменения внутренней энергии. Уравнение теплового баланса 9 класс с ответами. Тест включает 2 варианта. В каждом варианте 3 части. В части А — 6 заданий, в части В — 2 задания, в части С — 2 задания.
Вариант 1
A1. Тепловым движением можно считать:
1) движение одной молекулы
2) беспорядочное движение всех молекул
3) движение нагретого тела
4) любой вид движения
А2. От каких величин зависит внутренняя энергия?
1) от температуры тела и его массы
2) от скорости тела и его массы
3) от положения одного тела относительно другого
4) от температуры тела и его скорости
А3. В один стакан налили холодную воду, а в другой — такое же количество горячей воды. При этом:
1) внутренняя энергия воды в обоих стаканах одинакова
2) внутренняя энергия воды в первом стакане больше
3) внутренняя энергия воды во втором стакане больше
4) внутреннюю энергию определить невозможно
А4. В каком из приведенных примеров внутренняя энергия увеличивается путем совершения механической работы над телом?
1) нагревание гвоздя при забивании его в доску
2) нагревание металлической ложки в горячей воде
3) выбивание пробки из бутылки с газированным напитком
4) таяние льда
A5. Перенос энергии от более нагретых тел к менее нагретым в результате теплового движения и взаимодействия частиц называется:
1) теплоотдачей
2) излучением
3) конвекцией
4) теплопроводностью
А6. Каким образом в утюге осуществляется теплопередача от внутренней горячей части к внешней поверхности?
1) излучением
2) теплопроводностью
3) конвекцией
4) всеми тремя перечисленными способами в равной мере
В1. Определите, какое количество теплоты потребуется для нагревания смеси из 300 г воды и 50 г спирта с 20 °С ДО 70 °С.
В2. Сколько граммов спирта потребуется, чтобы нагреть до кипения 3 кг воды, взятой при температуре 20 °С?
C1. Вода массой 150 г, налитая в латунный калориметр массой 200 г, имеет температуру 12 °С. Найдите температуру, которая установится в калориметре, если в воду опустить железную гирю массой 0,5 кг, нагретую до 100 °С.
С2. Чтобы охладить выточенную из меди деталь, имеющую температуру 100 °С, ее погрузили в 420 г воды с температурой 15 °С. Определите массу детали, если известно, что в процессе теплообмена вода нагрелась до 18 °С.
Вариант 2
A1. Конвекция может происходить:
1) только в газах
2) в жидкостях и газах
3) только в жидкостях
4) в любых средах
А2. Процесс излучения энергии интенсивнее осуществляется у тел:
1) с темной поверхностью
2) с блестящей или светлой поверхностью
3) с более высокой температурой
4) с более низкой температурой
А3. Единицей измерения удельной теплоемкости вещества является:
1) Дж
2) Дж/кг
3) кг/Дж · °С
4) Дж/кг · °С
А4. Какое количество теплоты потребуется для нагревания воды массой 0,5 кг с 20 до 21 °С?
1) 2,1 кДж
2) 6,8 кДж
3) 21 кДж
4) 42 кДж
A5. Какое количество теплоты выделится при полном сгорании древесного угля массой 10 кг?
1) 3,4 · 10 7 Дж
2) 3,4 · 10 6 Дж
3) 3,4 · 10 8 Дж
4) 3,4 · 10 5 Дж
А6. Какое количество теплоты выделено или поглощено при сжигании m килограммов топлива с удельной теплотой сгорания q и удельной теплоемкостью с?
1) выделено cm
2) поглощено cm
3) выделено qm
4) поглощено qm
В1. В резервуаре нагревателя находится 800 г керосина. Сколько литров воды можно нагреть этим керосином с 10 до 100 °С, если на нагревание расходуется 40% выделяемой энергии?
В2. Алюминиевая кастрюля массой 250 г вмещает 2 кг молока. Какое количество теплоты требуется для нагревания этой кастрюли с молоком с 15 °С до 100 °С?
C1. Металлический цилиндр массой 200 г нагрели в кипящей воде до 100 °С, а затем опустили в воду массой 400 г, имеющую температуру 22 °С. Через некоторое время температура воды и цилиндра стала равна 25 °С. Какова удельная теплоемкость металла, из которого сделан цилиндр?
С2. Мальчик наполнил стакан емкостью 200 см 3 кипятком на три четверти, а затем долил доверху холодную воду. Определите, какая установилась температура воды в стакане, если температура холодной воды равна 20 °С.
Ответы на тест по физике Тепловое движение. Способы изменения внутренней энергии. Уравнение теплового баланса 9 класс
Вариант 1
А1-2
А2-1
А3-3
А4-1
А5-4
А6-2
В1. 69 250 Дж
В2. 37 г
С1. 34 °С
С2. 0,16 кг
Вариант 2
А1-2
А2-3
А3-4
А4-1
А5-1
А6-3
В1. 39 л
В2. 662 550 Дж
С1. 336 Дж/кг · °С
С2. 80 °С
Температура и скорость
Скорость теплового движения молекул зависит от температуры вещества. Чем выше температура, тем они движутся быстрее. Именно температура является мерой того, насколько интенсивно движутся молекулы или атомы.
Для повышения температуры нужно передать телу некоторое количество теплоты. Эта теплота идет на увеличение внутренней энергии тела. В нее вносят вклад кинетическая и потенциальная энергия молекул или атомов, составляющих вещество. Чем больше их энергия, тем быстрее они движутся.
Большинство молекул перемещается со скоростью, близкой к средней, и лишь небольшое их число имеет скорость намного меньшую или намного большую. Относительное число молекул, движущихся с определенной скоростью, можно найти с помощью функции распределения Максвелла по скоростям. Формулу это функции открыл Джеймс Клерк Максвелл. Из распределения Максвелла можно найти:
Также скорость передвижения частиц зависит от их массы. Чем масса больше, тем медленнее они движутся.
Доказательства явления
Для доклада на тему «Что называется тепловым движением» важно рассмотреть доказательства. Это броуновское движение и диффузия. Броуновское движение — это хаотическое перемещение взвешенных в жидкости твердых частиц. Броун впервые наблюдал такое поведение частичек пыльцы в воде.
Если посмотреть в микроскоп на взвешенную в воде пыльцу, будет видно, что частичка беспорядочно движется. Почему так происходит? Поскольку масса частички пыльцы сравнима с массой молекулы, эти удары заставляют ее двигаться скачками, так как в каждый момент времени случайным образом количество ударов с одной стороны оказывается больше, чем с другой.
Иногда понятие теплового движения в физике путают с понятием броуновского, однако это ошибка. Тепловым движением называют перемещение частиц самого вещества, тогда как под броуновским — частиц, взвешенных в жидкости или газе.
Именно тепловым движением объясняется явление диффузии. Она может происходить в разных классах веществ, даже в твердых телах, но там она идет значительно медленнее, чем в газах или жидкостях.
При диффузии частицы одного вещества проникают между частицами другого. При этом они движутся от области с большей концентрацией в область с меньшей, и концентрация сама по себе с течением времени выравнивается.
Примеры диффузии — это растворение сахара, соли и других веществ в воде, распространение запахов. При этом с ростом температуры растет и скорость диффузии, так как передвижение молекул становится интенсивнее.
Тепловое движение в различных веществах
Частицы любого вещества совершают тепловое движение. Но в зависимости от того, какое состояние рассматривается, этот процесс несколько отличается:
Эти различия связаны с отличием в строении разных агрегатных состояний.
В газе частицы мало взаимодействуют друг с другом и расположены неупорядоченно. Они имеют разные скорости и двигаются в различных направлениях.
В жидкостях существует только ближний порядок, то есть близко расположенные частицы взаимодействуют друг с другом сильнее, чем относительно удаленные. Они могут колебаться около положения равновесия, образовывать слои и перемещаться из одного в другой.
В твердых телах существует дальний порядок, атомы или молекулы обычно образуют кристаллическую решетку и находятся в ее узлах. Такая структура не дает им свободно перемещаться.
Тепловым движением называется непрерывное хаотическое перемещение частиц вещества. Оно характерно для любых веществ, а интенсивность его зависит от температуры. Доказать явление можно, рассматривая броуновское движение и диффузию.
Упорядоченное движение заряженных частиц: понятие и характеристики
Огромное множество физических явлений как микроскопического, так и макроскопического характера имеют электромагнитную природу. К ним относятся силы трения и упругости, все химические процессы, электричество, магнетизм, оптика.
Одно из таких проявлений электромагнитного взаимодействия – упорядоченное движение заряженных частиц. Оно представляет собой совершенно необходимый элемент практически всех современных технологий, находящих применение в самых различных областях – от организации нашего быта до космических полетов.
Общее понятие о феномене
Упорядоченное движение заряженных частиц называют электрическим током. Такое перемещение зарядов может осуществляться в разных средах посредством тех или иных частиц, иногда – квазичастиц.
Вам будет интересно: Прогнозирование спроса: понятие, виды и функции
При движении какого-либо тела, в целом электрически нейтрального, частицы в составе его атомов и молекул, конечно, движутся направленно, но, поскольку разноименные заряды в нейтральном объекте компенсируют друг друга, никакого переноса заряда нет, и говорить о токе в этом случае также не имеет смысла.
Как возникает ток
Рассмотрим простейший вариант возбуждения постоянного тока. Если к среде, где в общем случае присутствуют носители зарядов, приложить электрическое поле, в ней начнется упорядоченное движение заряженных частиц. Явление называется дрейфом зарядов.
Вкратце его можно описать следующим образом. В различных точках поля возникает разность потенциалов (напряжение), то есть энергия взаимодействия электрических зарядов, расположенных в этих точках, с полем, отнесенная к величине этих зарядов, будет различной. Поскольку всякая физическая система, как известно, стремится к минимуму потенциальной энергии, отвечающему равновесному состоянию, заряженные частицы начнут движение, направленное к выравниванию потенциалов. Иначе говоря, поле совершает некоторую работу по перемещению этих частиц.
Вам будет интересно: Организационная система: определение, основные функции, методы управления, задачи и процессы развития
Когда потенциалы выравниваются, обращается в нуль напряженность электрического поля – оно исчезает. Вместе с тем прекращается и упорядоченное движение заряженных частиц – ток. Для того чтобы получить стационарное, то есть не зависящее от времени, поле, необходимо использовать источник тока, в котором, благодаря выделению энергии в тех или иных процессах (например, химических), заряды непрерывно разделяются и поступают на полюса, поддерживая существование электрического поля.
Ток можно получать различными способами. Так, изменение магнитного поля воздействует на заряды во внесенном в него проводящем контуре и вызывает их направленное движение. Такой ток называется индукционным.
Количественные характеристики тока
Направление тока и направление дрейфа
Вам будет интересно: Решетнев Михаил Федорович: биография, личная жизнь, разработка космических систем и награды
В электрическом поле объекты, переносящие заряд, под действием кулоновских сил будут совершать к противоположному по знаку заряда полюсу источника тока упорядоченное движение. Частицы, заряженные положительно, дрейфуют в сторону отрицательного полюса («минуса») и, наоборот, свободные отрицательные заряды притягиваются к «плюсу» источника. Частицы могут перемещаться и в двух противоположных направлениях сразу, если в проводящей среде присутствуют носители зарядов обоих знаков.
По историческим причинам принято считать, что ток направлен так, как движутся положительные заряды – от «плюса» к «минусу». Чтобы избежать путаницы, следует помнить, что хотя в наиболее знакомом всем нам случае тока в металлических проводниках реальное перемещение частиц – электронов – происходит, конечно, в обратном направлении, указанное условное правило действует всегда.
Распространение тока и дрейфовая скорость
Частицы же совершают свое упорядоченное движение очень медленно (10-4–10-3 м/с). Дрейфовая скорость зависит от напряженности, с которой действует на них приложенное электрическое поле, но во всех случаях она на несколько порядков уступает скорости теплового беспорядочного движения частиц (105–106 м/с). Важно понимать, что под действием поля начинается одновременный дрейф всех свободных зарядов, поэтому ток возникает сразу во всем проводнике.
Виды тока
В первую очередь токи различают по поведению носителей заряда во времени.
Помимо этой важнейшей классификации, различия между токами можно проводить и по такому критерию, как характер движения носителей заряда по отношению к среде, в которой ток распространяется.
Токи проводимости
Наиболее известный пример тока – это упорядоченное, направленное движение заряженных частиц под действием электрического поля внутри какого-либо тела (среды). Оно именуется током проводимости.
В твердых телах (металлы, графит, многие сложные материалы) и некоторых жидкостях (ртуть и другие расплавы металлов) электроны являются подвижными заряженными частицами. Упорядоченное движение в проводнике – это их дрейф относительно атомов или молекул вещества. Проводимость такого рода называют электронной. В полупроводниках перенос зарядов также происходит за счет движения электронов, но по ряду причин удобно пользоваться для описания тока понятием дырки – положительной квазичастицы, представляющей собой перемещающуюся электронную вакансию.
В электролитических растворах прохождение тока осуществляется за счет движущихся к разным полюсам – аноду и катоду – отрицательных и положительных ионов, входящих в состав раствора.
Токи переноса
Газ – в обычных условиях диэлектрик – также может стать проводником, если подвергнуть его достаточно сильной ионизации. Газовая электропроводность носит смешанный характер. Ионизированный газ уже представляет собой плазму, в которой перемещаются и электроны, и ионы, то есть все заряженные частицы. Упорядоченное движение их формирует плазменный канал и называется газовым разрядом.
Направленное перемещение зарядов может происходить не только внутри среды. Допустим, в вакууме движется пучок электронов или ионов, испускаемых с положительного или отрицательного электрода. Это явление носит название электронной эмиссии и широко используется, к примеру, в вакуумных приборах. Безусловно, такое движение представляет собой ток.
Еще один случай – перемещение электрически заряженного макроскопического тела. Это – тоже ток, поскольку подобная ситуация удовлетворяет условию направленного переноса зарядов.
Все приведенные примеры необходимо рассматривать как упорядоченное движение заряженных частиц. Называется такой ток конвекционным или током переноса. Его свойства, например, магнитные, совершенно аналогичны таковым у токов проводимости.
Ток смещения
Существует явление, не имеющее отношения к переносу зарядов и возникающее там, где наличествует изменяющееся во времени электрическое поле, которое обладает свойством, присущим «настоящим» токам проводимости или переноса: оно возбуждает переменное магнитное поле. Это происходит, например, в цепях переменного тока между обкладок конденсаторов. Явление сопровождается передачей энергии и называется током смещения.
По сути, данная величина показывает, как быстро изменяется индукция электрического поля на некоторой поверхности, перпендикулярной к направлению ее вектора. Понятие электрической индукции включает в себя векторы напряженности поля и поляризации. В вакууме учитывается только напряженность. Что же касается электромагнитных процессов в веществе, то поляризация молекул или атомов, в которых при воздействии поля имеет место движение связанных (не свободных!) зарядов, вносит некоторый вклад в ток смещения в диэлектрике или проводнике.
Название возникло в XIX веке и носит условный характер, так как действительный электрический ток – это упорядоченное движение заряженных частиц. Ток смещения с дрейфом зарядов никак не связан. Поэтому он, строго говоря, током не является.
Проявления (действия) тока
Упорядоченное движение заряженных частиц всегда сопровождается теми или иными физическими явлениями, по которым, собственно, и можно судить о том, протекает данный процесс или нет. Можно разделить такие явления (действия тока) на три основных группы:
За исключением случаев, когда упорядоченное движение заряженных частиц является предметом научных исследований, оно интересует человека в своих макроскопических проявлениях. Важен для нас не ток сам по себе, а перечисленные выше явления, которое он вызывает, благодаря превращениям электрической энергии в другие виды.
Все действия тока играют двоякую роль в нашей жизни. В одних случаях от них необходимо защищать людей и технику, в других – получение того или иного эффекта, вызываемого направленным переносом электрических зарядов, является прямым назначением самых разнообразных технических устройств.
Тепловое движение — доказательство явления, виды и признаки
Молекулы или атомы веществ не находятся в состоянии покоя, а непрерывно движутся. Тепловое движение — это беспорядочное коллективное перемещение частиц вещества. Обычно рассматривается это явление для атомов или молекул, но оно характерно для любых частиц (электронов, ионов и других).
Температура и скорость
Скорость теплового движения молекул зависит от температуры вещества. Чем выше температура, тем они движутся быстрее. Именно температура является мерой того, насколько интенсивно движутся молекулы или атомы.
Для повышения температуры нужно передать телу некоторое количество теплоты. Эта теплота идет на увеличение внутренней энергии тела. В нее вносят вклад кинетическая и потенциальная энергия молекул или атомов, составляющих вещество. Чем больше их энергия, тем быстрее они движутся.
Большинство молекул перемещается со скоростью, близкой к средней, и лишь небольшое их число имеет скорость намного меньшую или намного большую. Относительное число молекул, движущихся с определенной скоростью, можно найти с помощью функции распределения Максвелла по скоростям. Формулу это функции открыл Джеймс Клерк Максвелл. Из распределения Максвелла можно найти:
Также скорость передвижения частиц зависит от их массы. Чем масса больше, тем медленнее они движутся.
Доказательства явления
Для доклада на тему «Что называется тепловым движением» важно рассмотреть доказательства. Это броуновское движение и диффузия. Броуновское движение — это хаотическое перемещение взвешенных в жидкости твердых частиц. Броун впервые наблюдал такое поведение частичек пыльцы в воде.
Если посмотреть в микроскоп на взвешенную в воде пыльцу, будет видно, что частичка беспорядочно движется. Почему так происходит? Поскольку масса частички пыльцы сравнима с массой молекулы, эти удары заставляют ее двигаться скачками, так как в каждый момент времени случайным образом количество ударов с одной стороны оказывается больше, чем с другой.
Иногда понятие теплового движения в физике путают с понятием броуновского, однако это ошибка. Тепловым движением называют перемещение частиц самого вещества, тогда как под броуновским — частиц, взвешенных в жидкости или газе.
Именно тепловым движением объясняется явление диффузии. Она может происходить в разных классах веществ, даже в твердых телах, но там она идет значительно медленнее, чем в газах или жидкостях.
При диффузии частицы одного вещества проникают между частицами другого. При этом они движутся от области с большей концентрацией в область с меньшей, и концентрация сама по себе с течением времени выравнивается.
Примеры диффузии — это растворение сахара, соли и других веществ в воде, распространение запахов. При этом с ростом температуры растет и скорость диффузии, так как передвижение молекул становится интенсивнее.
Тепловое движение в различных веществах
Частицы любого вещества совершают тепловое движение. Но в зависимости от того, какое состояние рассматривается, этот процесс несколько отличается:
Эти различия связаны с отличием в строении разных агрегатных состояний.
В газе частицы мало взаимодействуют друг с другом и расположены неупорядоченно. Они имеют разные скорости и двигаются в различных направлениях.
В жидкостях существует только ближний порядок, то есть близко расположенные частицы взаимодействуют друг с другом сильнее, чем относительно удаленные. Они могут колебаться около положения равновесия, образовывать слои и перемещаться из одного в другой.
В твердых телах существует дальний порядок, атомы или молекулы обычно образуют кристаллическую решетку и находятся в ее узлах. Такая структура не дает им свободно перемещаться.
Тепловым движением называется непрерывное хаотическое перемещение частиц вещества. Оно характерно для любых веществ, а интенсивность его зависит от температуры. Доказать явление можно, рассматривая броуновское движение и диффузию.
Тепловое движение
Теплово́е движе́ние — процесс хаотического (беспорядочного) движения частиц, образующих вещество. Чаще всего рассматривается тепловое движение атомов и молекул.
Хаотичность — важнейшая черта теплового движения. Важнейшими доказательствами существования движения молекул является Броуновское движение и диффузия.
Примечания
Неверно смешивать понятия «Тепловое движение» и «Броуновское движение». Броуновским называется движение видимых взвешенных в веществе частиц; тепловым — движение частиц самого вещества. Тепловое движение является причиной броуновского движения.
См. также
Полезное
Смотреть что такое «Тепловое движение» в других словарях:
ТЕПЛОВОЕ ДВИЖЕНИЕ — ТЕПЛОВОЕ ДВИЖЕНИЕ, хаотическое движение микрочастиц, из которых состоят все тела. Кинетическая энергия теплового движения растет с абсолютной температурой вещества. Частицы газов беспорядочно движутся по всему объему газа, часто испытывая… … Современная энциклопедия
тепловое движение — Хаотическое движение атомов, молекул и др. частиц вещ ва, интенсивность к рого определяется темп рой тела. [http://metaltrade.ru/abc/a.htm] Тематики металлургия в целом EN heat motion … Справочник технического переводчика
ТЕПЛОВОЕ ДВИЖЕНИЕ — беспорядочное (хаотическое) движение атомов и молекул, из которых состоят все тела. В газах расстояния между атомами и молекулами в среднем значительно больше размеров молекул. Силы отталкивания на больших расстояниях не действуют, поэтому газы… … Большая политехническая энциклопедия
тепловое движение — šiluminis judėjimas statusas T sritis chemija apibrėžtis Netvarkingas kūno mikrodalelių judėjimas. atitikmenys: angl. heat motion; thermal motion rus. тепловое движение … Chemijos terminų aiškinamasis žodynas
тепловое движение — šiluminis judėjimas statusas T sritis fizika atitikmenys: angl. heat motion; thermal motion vok. thermische Bewegung, f; Wärmebewegung, f rus. тепловое движение, n pranc. agitation thermique, f; mouvement thermique, m … Fizikos terminų žodynas
тепловое движение — šiluminis judėjimas statusas T sritis Energetika apibrėžtis Betvarkis (slenkamasis, sukamasis ir t.t.) mikrodalelių judėjimas. Šiluminis judėjimas iš esmės skiriasi nuo paprasto mechaninio judėjimo, kai visos kūno dalys juda tam tikra tvarka.… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas
тепловое движение — [heat motion] хаотическое движение атомов, молекул и других частиц вещества, интенсивность которого определяется температурой тела. Смотри также: Движение турбулентное движение неконсервативное движение дисло … Энциклопедический словарь по металлургии
Тепловое движение — беспорядочное (хаотическое) движение микрочастиц (молекул, атомов, электронов и др.), из которых состоят все тела. Т. д. это особая форма движения (См. Движение) материи, качественно отличная от обычного механического движения, при… … Большая советская энциклопедия
ТЕПЛОВОЕ ДВИЖЕНИЕ — хаотическое движение (поступат., вращат. и т. д.) микрочастиц, из к рых состоят все тела. Т. д. качественно отличается от обычного механич. движения, при к ром все пасти тела движутся упорядоченно. Кинетич. энергия Т. д., прямо пропорциональная… … Большой энциклопедический политехнический словарь
Движение — все явления природы состоят в движении вещества или же объясняются движением. Движущееся тело может быть неизменяемого вида или же изменяемого, деформирующееся; во всяком случае приходится говорить о движении всех или некоторых точек тела:… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона