Для чего нужна машина Атвуда?
Машина Атвуда представляет собой специализированное и высокоточное лабораторное устройство, которое применяется для выполнения действий по изучению поступательного движения. При этом существует обязательное условие постоянного и постепенного ускорения. Данная машина была изобретена достаточно давно, сегодня она максимально оптимизирована и модернизирована, что провоцирует возможность получения высокой результативности ее использования в той или иной области исследования. Именно по этой причине в настоящий момент времени данное оборудование способно в действительности импонировать поставленным целям, также оно способно стать неоспоримой основой реализации поставленных задач. Машина атвуда по ссылке https://labbox.ru/product/blok-na-strubcine/ описана крайне детально. Тут вы сможете изучить основные нюансы и особенности данного приспособления, что даст возможность сделать продуманный и рациональный выбор.
Основные особенности и нюансы машины Атвуда
Данное приспособление имеет особую структуру конструкции, при этом за счет этого оно является очень удобным и выгодным в использовании, также обеспечивается получение наиболее четких и точных данных. При помощи машины Атвуда вы можете убедиться в основных особенностях и критериях создаваемых поступательных движений.
Машина в первую очередь предназначена для изучения равноускоренного движения. При этом используются самые разнообразные действия различных сил. Данная машина представляет собой специализированную установку, которая состоит из легкого блока, а также неподвижной оси. Кроме всего прочего, предоставляются дополнительные грузы различной массы, которые являются вращательными, также они подвешены на нерастяжимой нити, которая перекинута через блок. То есть, сама структура строения данного приспособления достаточно проста.
Обратим ваше внимание также на то, что в настоящий момент времени данное приспособление выгодно в применении за счет компактности. Поэтому в различных лабораторных исследованиях, а также в процессе проведения самых разнообразных школьных экспериментов, данные приспособления применяются очень активно. Есть лабораторные и учебные комплексы. В работе происходит процесс изменения массы грузов, при этом измеряемой величиной работы данного приспособления является как раз движение. В результате проведенных экспериментов могут быть определены данные по ускорению груза, а также сила натяжения нити, в том числе ускорение свободного падения. Соответственно данное приспособление на текущий момент времени является рациональным для проведения самых разнообразных экспериментов не только в школе, но и высших учебных заведениях.
Вполне очевидным является тот факт, что вам нужно будет приобрести высококачественное изделие, которое изготовлено на основании четко определенной конструкции. Именно благодаря особым конструктивным решениям формируется необходимость и возможность реализации поставленных задач по использованию данного приспособления в рамках проведения эксперимента.
Посетив указанный сайт, вы непременно сможете найти интересные решения, которые смогут импонировать поставленным целям и задачам. Соответственно вы сможете сделать правильное и рациональное приобретение, которое будет направлено на реализацию поставленных целей и задач. Обратите внимание на то, что есть школьные варианты оборудования, которые имеют более простую конструкцию, и отличаются низкими параметрами цены. Также востребованы более сложные конструкции, которые являются лабораторными, они изготавливаются из более качественных материалов и способны выдерживать значительную нагрузку.
Изучение законов поступательного движения на машине Атвуда: формулы и пояснения
Использование простых механизмов в физике позволяет изучать различные природные процессы и законы. Одним из этих механизмов является машина Атвуда. Рассмотрим в статье, что она собой представляет, для чего используется, и какие формулы описывают принцип ее работы.
Что такое машина Атвуда?
Названная машина представляет собой простой механизм, состоящий из двух грузов, которые соединены переброшенной через неподвижный блок нитью (веревкой). В данном определении следует пояснить несколько нюансов. Во-первых, массы грузов в общем случае являются разными, что обеспечивает наличие у них ускорения под действием силы тяжести. Во-вторых, нить, связывающая грузы, считается невесомой и нерастяжимой. Эти предположения значительно облегчают последующие расчеты уравнений движения. Наконец, в-третьих, неподвижный блок, через который переброшена нить, также считается невесомым. Кроме того, во время его вращения пренебрегают силой трения. Ниже на схематическом рисунке показана эта машина.
Вам будет интересно: Пространственная экономика: описание специальностей и структура
Вам будет интересно: Что такое подполье? Подпольная организация «Молодая гвардия». Антифашистское движение
Машина Атвуда была изобретена английским физиком Джорджем Атвудом в конце XVIII века. Служит она для изучения законов поступательного движения, точного определения ускорения свободного падения и экспериментальной проверки второго закона Ньютона.
Уравнения динамики
Каждый школьник знает, что ускорение у тел появляется только в том случае, если на них оказывают действие внешние силы. Данный факт был установлен Исааком Ньютоном в XVII веке. Ученый изложил его в следующем математическом виде:
Где m – инерционная масса тела, a – ускорение.
Изучение законов поступательного движения на машине Атвуда предполагает знание соответствующих уравнений динамики для нее. Предположим, что массы двух грузов равны m1 и m2, причем m1>m2. В таком случае первый груз будет перемещаться вниз под действием силы тяжести, а второй груз будет двигаться вверх под действием силы натяжения нити.
Рассмотрим, какие силы действуют на первый груз. Их две: сила тяжести F1 и сила натяжения нити T. Силы направлены в разных направлениях. Учитывая знак ускорения a, с которым перемещается груз, получаем следующее уравнение движения для него:
Что касается второго груза, то на него действуют силы той же природы, что и на первый. Поскольку второй груз движется с ускорением a, направленным вверх, то уравнение динамики для него принимает вид:
Таким образом, мы записали два уравнения, в которых содержатся две неизвестных величины (a и T). Это означает, что система имеет однозначное решение, которое будет получено далее в статье.
Расчет уравнений динамики для равноускоренного движения
Как мы видели из записанных выше уравнений, результирующая сила, действующая на каждый груз, остается неизменной в процессе всего движения. Масса каждого груза также не меняется. Это означает, что ускорение a будет постоянным. Такое движение называют равноускоренным.
Изучение равноускоренного движения на машине Атвуда заключается в определении этого ускорения. Запишем еще раз систему динамических уравнений:
Чтобы выразить значение ускорения a, сложим оба равенства, получаем:
Подставляя явное значение сил тяжести для каждого груза, получаем конечную формулу для определения ускорения:
Отношение разницы масс к их сумме называют числом Атвуда. Обозначим его na, тогда получим:
Проверка решения уравнений динамики
Выше мы определили формулу для ускорения машины Атвуда. Она является справедливой только в том случае, если справедлив сам закон Ньютона. Проверить этот факт можно на практике, если провести лабораторную работу по измерению некоторых величин.
Лабораторная работа с машиной Атвуда является достаточно простой. Суть ее заключается в следующем: как только грузы, находящиеся на одном уровне от поверхности, отпустили, необходимо засечь время движения грузов секундомером, а затем, измерить расстояние, на которое переместился любой из грузов. Предположим, что соответствующие время и расстояние равны t и h. Тогда можно записать кинематическое уравнение равноускоренного движения:
Откуда ускорение определяется однозначно:
Отметим, что для увеличения точности определения величины a, следует проводить несколько экспериментов по измерению hi и ti, где i – номер измерения. После вычисления значений ai, следует рассчитать среднюю величину acp из выражения:
Где m – количество измерений.
Приравнивая это равенство и полученное ранее, приходим к следующему выражению:
Если данное выражение оказывается справедливым, то таковым также будет и второй закон Ньютона.
Расчет силы тяжести
Выше мы предположили, что значение ускорения свободного падения g нам известно. Однако при помощи машины Атвуда определение силы тяжести также оказывается возможным. Для этого вместо ускорения a из уравнений динамики следует выразить величину g, имеем:
Чтобы найти g, следует знать, чему равно ускорение поступательного перемещения. В пункте выше мы уже показали, как его находить экспериментальным путем из уравнения кинематики. Подставляя формулу для a в равенство для g, имеем:
Вычислив значение g, несложно определить силу тяжести. Например, для первого груза ее величина будет равна:
Определение силы натяжения нити
Сила T натяжения нити является одним из неизвестных параметров системы динамических уравнений. Выпишем еще раз эти уравнения:
Если в каждом равенстве выразить a, и приравнять оба выражения, тогда получим:
T = (m2*F1 + m1*F2)/(m1 + m2).
Подставляя явные значения сил тяжести грузов, приходим к конечной формуле для силы натяжения нити T:
Машина Атвуда имеет не только теоретическую пользу. Так, подъемник (лифт) использует при своей работе контргруз с целью подъема на высоту полезного груза. Такая конструкция значительно облегчает работу двигателя.
Изучение динамики поступательного движения тела с помощью машины Атвуда
Применение машины Атвуда для изучения законов динамики движения тел в поле земного тяготения. Принцип работы механизма. Вывод значения ускорения свободного падения тела из закона динамики для вращательного движения. Расчет погрешности измерений.
Министерство образования РФ
Рязанская государственная радиотехническая академия
Изучение динамики поступательного движения тела с помощью машины Атвуда
Рязань
Цель работы: Изучение динамики поступательного движения тела в поле сил земного тяготения, определение ускорения свободного падения.
Приборы и принадлежности: машина Атвуда со встроенным миллисекундомером, набор грузов и перегрузов.
Машина Атвуда используется для изучения законов динамики движения тел в поле земного тяготения. Принцип работы машины Атвуда таков: если на концах нити висят грузы А и Б одинаковой массы, то система должна находиться в положении безразличного равновесия. Когда на один из грузов (массой М) кладут Масса перегрузка (массой m), то система выходит из положения безразличного равновесия и грузы А и Б начинают двигаться равноускоренно.
Вначале запишем второй закон Ньютона для обоих грузов, предполагая, что нить с блоком не весомы, сила трения мала и нить не растяжима (T1 = T1).
Выразим из данной системы ускорение a.
Проверим равноускоренный характер движения грузов, экспериментально получая значения пути данных грузов S (для обоих грузов он одинаков) и время движения t.
Где ai— экспериментальное ускорение полученное из формулы (3).
Подставляя ai в (2) получаем следующую формулу.
Выразив его из данной системы получим
Методические указания к лабораторной работе «Машина Атвуда»
Экспериментальная проверка основных уравнений и законов поступательного движения тела в поле сил земного тяготения, определение ускорения свободного падения лабораторной установке – машине Атвуда.
Время движения грузов измеряется с помощью ручного или стационарного секундомера.
Для выполнения работы машина Атвуда должна быть установлена строго вертикально, что легко проверить по параллельности шкалы и нити.
Второй закон Ньютона в проекциях на вертикальную ось для каждого из тел системы (рис.2) в предположении невесомости блока, отсутствия силы трения и нерастяжимости нити дает:
(1)
(2)
Так как начальная скорость в опытах на машине Атвуда обычно равна нулю и движение условно начинается из начала координат, то
(3)
Третье соотношение часто называют законом перемещений: «Перемещение при равноускоренном движении прямо пропорционально квадрату времени движения».
Соотношение (3) может быть проверено экспериментально на машине Атвуда. Кроме того, машина Атвуда дает возможность экспериментально проверить второй закон Ньютона для поступательного движения: «Ускорение, с которым движется тело, прямо пропорционально равнодействующей действующих на него сил и обратно пропорционально массе этого тела».
Подставляя a i в (2) получаем следующую формулу:
(4)
(5)
— сумма проекций на ось Z всех сил, действующих на вращающиеся тело; α- угловое ускорение блока; J – его момент инерции
(6)
Выразим из уравнения (1) разность сил натяжения ( T 1 – T 2 ) и подставив ее в уравнение (6) получим:
(7)
Выразим ускорение грузов a :
(8)
Учитывая, что значение момента инерции блока
(9),
k- коэффициент распределения массы блока относительно оси вращения (k
11)
Задание 1. Проверка второго закона Ньютона.
Поскольку ускорение движения является функцией двух переменных – силы и массы, то изучение второго закона Ньютона выполняется путем раздельного исследования двух зависимостей: 1) зависимости ускорения от действующей силы при постоянной массе системы и 2) зависимости ускорения от массы системы при постоянной действующей силе.
Исследование зависимости ускорения от силы при постоянной массе
Измерения и обработка результатов
3. Измеряют время равноускоренного движения системы на пути, например, 1 метр. Все данные заносят в таблицу 1.3 отчета.
4. Пользуясь законом путей (1.6), вычисляют ускорение а.
5. Поводят еще 5-6 опытов, последовательно увеличивая массу перегрузков.
6. Строят график зависимости ускорения движения от действующей силы. Точку ( F =0, a =0) на графике не откладывают. Если экспериментальные точки ложатся на прямую с небольшим разбросом и прямая проходит через начало координат, то можно сделать вывод о том, что ускорение действительно прямо пропорционально силе.
7. По угловому коэффициенту полученной прямой определяют массу системы и сравнивают ее реальной массой.
Исследование зависимости ускорения от массы при постоянной силе
Измерения и обработка результатов
1. Все опыты проводят с одним и тем же перегрузком, т.е. при постоянной действующей силе. Ускорение системы измеряется также как и в предыдущем задании.
2. Для изменения массы системы одновременно на правый и левый груз кладут дополнительные одинаковые грузы. Все данные записывают в таблицу отчета.
3. График обратно пропорциональной зависимости ускорения от массы представляет собой гиперболу, которую невозможно идентифицировать. Для проверки предположения об обратно пропорциональной зависимости между ускорением и массой необходимо построить график зависимости ускорения от обратного значения массы системы: a = f (М -1 ). Подтверждением предположения является прямолинейность этого графика.
4. По угловому коэффициенту полученной прямой определяют значение приложенной силы и сравнивают ее с реально действующей в системе
Задание 2. Определение ускорения движения грузов
В полученном уравнении прямой коэффициент k равен половине ускорения системы: k=a/2. Это позволяет вычислить ускорение грузов ( a =2 k ) в данном опыте и определить погрешность его измерения. Произведите необходимые вычисления и занесите результаты в отчет.
Задание 3. Определение ускорения свободного падения
(Выполняется по результатам измерений и вычислений, проведенных в первом и втором заданиях). Зная массы грузов и перегрузка, а также ускорение движения системы, из формулы (3) найдите ускорение свободного падения. Результаты занесите в отчет. В выводе сравните полученный результат с табличной величиной.
Для нахождения погрешности измерения величины ускорения свободного падения Δ g используем формулу:
12)
где ; ; ; ;
– частные производные функции
Проанализируйте результаты своих наблюдений и сформулируйте вывод.
Контрольные вопросы
Какое движение называется поступательным?
Дайте определение инерциальной системы отсчета. Приведите примеры ИСО.
Сформулируйте первый закон Ньютона. Приведите примеры его проявления.
Дайте определение инертной массы тела. Гравитационной? От чего и как зависит масса тела?
Сформулируйте второй закон Ньютона. Приведите варианты его математической формы.
Покажите все силы, действующие на один из грузов в машине Атвуда, и составьте для него уравнение динамики.
Запишите систему уравнений динамики для машины Атвуда с учетом момента инерции блока. Силы трения в блоке?