Прибор для выставления зажигания на мотоцикле

Содержание

Приспособление для установки момента зажигания.

Это приспособление для установки момента зажигания необходимо владельцам двигателей, в которых в головке свеча зажигания установлена под углом.

Владельцы некоторых старых мотоциклов (например К-750, М72 и др.) сталкиваются с проблемой проверки и установки правильного момента зажигания, так как в картере этих моторов нет специального отверстия, в котором имеются метки, означающие положение поршней в ВМТ и момента опережения зажигания, до ВМТ. Да ещё и свеча зажигания в таких моторах расположена под углом и обычный индикатор в таком деле не поможет. В этой небольшой статье будет показано простейшее приспособление, которое не сложно изготовить своими руками и которое позволит выставить правильный момент зажигания на таких двигателях.

На большинстве более современных мотоциклов (например Уралы и Днепры) в картере двигателя имеется специальное окошко, в котором видны соответствующие метки, показывающие положение поршней в момент вспышки и в момент подхода поршней к ВМТ. И регулировка зажигания на таких мотоциклах не вызывает трудностей и довольно проста (о правильной регулировке зажигания таких мотоциклов читаем тут).

На других мотоциклах (например двухтактные ИЖи и Явы) регулировка зажигания и выставление момента зажигания тоже не сложная, так как свечные отверстия расположены строго вертикально. И достаточно вкрутить индикатор часового типа, вкрученный в простейшее приспособление (трубка с подпружиненным штоком, двигающимся внутри) показанное на фото слева.

Зная заводские данные по опережению зажигания (обычно 2,5 — 2,8 мм, но может быть и другим) несложно подвести поршни (вращая коленвал) к ВМТ, поршень упрётся и отодвинет шток индикатора, который и покажет на сколько мм следует опустить поршень, вращая коленвал назад. Далее останется только выставить контакты прерывателя на начало их размыкания и это подробно описано в статье про регулировку зажигания — ссылка чуть выше.

%D0%9F%D1%80%D0%B8%D1%81%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 %D0%B4%D0%BB%D1%8F %D1%83%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B8 %D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%B0 %D0%B7%D0%B0%D0%B6%D0%B8%D0%B3%D0%B0%D0%BD%D0%B8%D1%8F %D0%BC%D0%BE%D1%82%D0%BE%D1%86%D0%B8%D0%BA%D0%BB%D0%B0 %D0%B7%D0%B0%D0%B2%D0%BE%D0%B4%D1%81%D0%BA%D0%BE%D0%B5

Для этих мотоциклов уже можно купить это приспособление заводского изготовления (например как на фото слева), а если и не найдёте в продаже, то несложно сделать его своими руками, достаточно взять стальную трубку, на которой нарезается такая же резьба, как и на свече зажигания (М14х1,5 — см. чертёж чуть ниже) и далее останется закрепить на трубке сам индикатор часового типа, у которого носик удлиняется с помощью стального стержня, подходящей длины (чтобы упирался в донышко поршня).

%D0%9F%D1%80%D0%B8%D1%81%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 %D0%B4%D0%BB%D1%8F %D1%83%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B8 %D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%B0 %D0%B7%D0%B0%D0%B6%D0%B8%D0%B3%D0%B0%D0%BD%D0%B8%D1%8F %D0%BC%D0%BE%D1%82%D0%BE%D1%86%D0%B8%D0%BA%D0%BB%D0%B0

1 — индикатор часового типа, 2 — зажимной винт, 3 — втулка, 4 — корпус, 5 — подвижный шток

У кого нет индикатора часового типа, можно просто сделать так, чтобы стальной стержень с некоторым усилием скользил внутри трубки, а на самом стержне сделать 2 метки, одна из которых будет показывать положение поршня в ВМТ, а вторая метка делается на стержне чуть выше, ровно на столько мм, на сколько указано опережение в мануале двигателя.

И хотя с индикатором часового типа выставлять момент зажигания намного проще и точнее, но всё же и таким способом можно вполне выставить нужное опережение.

Приспособление для выставления момента зажигания более старых двигателей.

Ну а как было сказано выше, на оппозитных двигателях свеча расположена под углом и здесь приспособление описанное выше не поможет. К тому же на старых мотоциклах нет даже лючка в картере двигателя и меток на маховике. В таком случае поможет самодельное приспособление, показанное на рисунке чуть ниже. Принцип действия такой приспособы понятен из рисунка.

%D0%A1%D0%B0%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5 %D0%BF%D1%80%D0%B8%D1%81%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 %D0%B4%D0%BB%D1%8F %D1%83%D1%81%D1%82%D0%B0%D0%BD%D0%BE%D0%B2%D0%BA%D0%B8 %D0%BC%D0%BE%D0%BC%D0%B5%D0%BD%D1%82%D0%B0 %D0%B7%D0%B0%D0%B6%D0%B8%D0%B3%D0%B0%D0%BD%D0%B8%D1%8F.Резьбовой корпус 5 прибора делается из старой свечи зажигания, из которой удаляется фарфоровый изолятор, центральный и боковой электроды. На оси 7 расположен равноплечий рычаг (концы которого помечены буквами А и Б). Этот рычаг, с помощью пружины 6 поджат к корпусу 5.

Оптимальная длина рычага составляет 110 мм (то есть от оси 7 до каждого края рычага — по 55 мм). А для увеличения хода рычага, в резьбовой части нужно сделать вырез 4. В качестве оси 7 можно использовать отрезок гвоздя, который расклёпывается после того, как ось вставится в корпус (и рычаг тоже).

После изготовления приспособления, оно вкручивается в свечное отверстие в головке цилиндра. Далее медленно прокручиваем коленвал кикстартером (лучше гаечным ключом за распредвал), при этом поршень при своём ходе вверх начинает давить на плечо Б рычага, а плечо А уходит вниз и смещает подвижную скобу 3, которая в конце концов останавливается в положении, показывающем ВМТ поршня.

На неподвижной планке 2 наносится шкала, с миллиметровыми делениями (можно приклеить кусочек шкалы от линейки). Стрелка 1 рычага (на конце А) при ходе поршня движется в прорези планки. После достижения поршнем ВМТ (это покажет стрелка 1 и скоба 3) остаётся отвести поршень в обратную сторону (соответственно вращая коленвал в обратную сторону) на число миллиметров, которое соответствует опережению зажигания для вашего двигателя (уточняем в мануале).

При этом останется только по контрольной лампочке (или по тестеру) установить момент начала размыкания контактов (подробно это описано в статье про регулировку зажигания — ссылка на статью выше в тексте).

Надеюсь, что изготовив такое приспособление, у владельцев старых оппозитных моторов теперь не будет проблем с установкой нужного момента зажигания, успехов всем.

Источник

Прибор для выставления зажигания на мотоцикле

Известно, что правильно выбранное опережение зажигания обеспечивает наилучшие мощностные и экономические показатели работы двигателя, поддерживает оптимальный тепловой режим и способствует повышению долговечности его основных деталей.

Наивыгоднейший момент зажигания определяют на стендах при заводских испытаниях и указывают в инструкциях величину опережения, которой следует руководствоваться при регулировке.

Влияние опережения зажигания на характеристики двигателя представлено на вкладке в виде кривых зависимости давления в цилиндре от положения поршня при различных значениях опережения — «нормальном», «раннем» и «позднем» (рис. 1). Нетрудно заметить, что при оптимальном опережении быстро растущее давление образовавшихся газов достигает максимума сразу же после прохождения поршнем верхней мертвой точки. В результате обеспечивается наиболее эффективная работа двигателя — на наших графиках она характеризуется площадью, ограниченной кривой. На первом — эта площадь (то есть полезная работа одного цикла) максимальная, что и обеспечивает наибольшую мощность и, при данных условиях, экономичность.

На втором графине представлен случай слишком большого опережения зажигания, тан называемого раннего. Что при этом происходит в цилиндре? Как видим, давление в нем начинает быстро возрастать в тот момент, когда поршень еще далек от верхней мертвой точки, достигает своего максимума и. к моменту прихода поршня в верхнюю точку начинает падать! Вершина кривой образует «петлю» (заштрихованная площадь), которая представляет вредную, отрицательную работу цикла, препятствующую вращению коленчатого вала. В результате возрастают нагрузки на все основные детали двигателя, он работает «жестко», с металлическими стуками. Максимальное давление в цилиндре зачастую значительно превышает нормальное расчетное значение, что почти неизбежно оборачивается детонацией, то есть ненормальным сгоранием взрывного характера. Это, в свою очередь, еще больше увеличивает отрицательную работу цикла, снижает мощность, приводит к перегрузке и перегреву двигателя, к непроизводительному расходу топлива.

На третьем графике показана противоположная крайность, когда смесь в цилиндре воспламеняется слишком поздно, например при положении поршня в верхней мертвой точке или даже за ней. В таких условиях давление в цилиндре нарастает медленно, как бы вдогон опускающемуся поршню, максимально возможное его значение намного ниже расчетного. При позднем зажигании сгорание может затягиваться вплоть до открытия выпускных окон (выпускных клапанов) и продолжаться в выпускной трубе. Итог — снижение мощности двигателя (полезная площадь, ограниченная кривой, невелика), увеличенный расход топлива. Затянутое сгорание увеличивает тепловые потери, что определяется общим перегревом двигателя, особенно нижней зоны цилиндра и прилегающих частей картера (у двухтактного двигателя) или верхней зоны у головни с клапанным механизмом (у четырехтактного), а также перегревом деталей выпускной системы, например выпускного клапана и трубы.

1. Графики давления в цилиндрах и диаграммы мощности в зависимости от опережения зажигания

kak otregulirovat zazhiganie na motocikle 1

Нормальное опережение. Двигатель дает полную мощность.

Раннее. Мощность снижена. Повышенные нагрузки на детали кривошипно-шатунного механизма, детонация, стуки, увеличенный расход топлива.

Позднее. Мощность двигателя неполная. Увеличенный расход топлива, перегрев двигателя.

2. Батарейное зажигание

kak otregulirovat zazhiganie na motocikle 2

Установить зазор «а» (для большинства мотоциклов — 0,35 — 0,4 мм) между контактами 3 и 4 прерывателя при положении поршня в ВМТ. Для этого ввернуть вместо свечи приспособление I для измерения хода поршня и, ослабив винты 2 крепления неподвижного контакта 3 (наковальни), отодвинуть его от подвижного ион-такта 4 или приблизить к нему.

3. Отрегулировать момент зажигания.

kak otregulirovat zazhiganie na motocikle 3

Для этого присоединить контрольную лампочку 4 параллельно контактам. Включить зажигание. Ключом, надетым на головку болта 1, крепящего кулачок, повернуть коленчатый вал по ходу вращения так, чтобы поршень не доходил до ВМТ на величину опережения зажигания, указанную в инструкции. В этот момент должна загореться контрольная лампа, свидетельствующая о разрыве контактов, вызывающем искру на свече.

При отсутствии лампы искру можно наблюдать непосредственно на свече 5, прижав ее корпус к «массе» (головке цилиндра, цилиндру и т. п.), или по появлению зазора «b» 0,05 мм между контактами. Его измеряют щупом или при помощи папиросной бумаги (будучи зажатой между контактами, она освобождается при появлении зазора 0,05 мм).

Установить требуемый момент зажигания поворотом основания 3 прерывателя, ослабив винты 2 его крепления.

4. Система зажигания с генератором переменного тока

kak otregulirovat zazhiganie na motocikle 4

Зазор между контактами при положении поршня в ВМТ и в момент образования искры регулировать и измерять как в системе с батарейным зажиганием.
Начало разрыва контактов определить при помощи папиросной бумаги или щупа.

Требуемое опережение зажигания регулируют поворотом генератора.

5. Система электронного зажигания

kak otregulirovat zazhiganie na motocikle 5

Опережение зажигания регулировать поворотом статора генератора до совмещения паза 1 ротора с выступом 2 датчика.

6. Приспособления, используемые при регулировании опережения зажигания

kak otregulirovat zazhiganie na motocikle 6

1, 2, 3 — для измерения хода поршня: индикаторное; с точеным корпусом; с корпусом от свечи; 4, 5 — специальные щупы; 6 — лезвие безопасной бритвы; 7 — папиросная бумага; 8 — контрольная лампа.

Источник

Проверка 3-х соответствий. Установка момента зажигания БСЗ прибором МД-1 или индикатором.

riAAAgJJbOA 100

Однажды наткнулся на очень редкую и интересную документацию по настройке момента зажигания, хочу поделиться с вами своим опытом. В кавычках буду давать выдержки из документации. Весь процесс разделим на 3 этапа.

Этап 1. Обязательные подготовительные работы
Кто не понял слово “ОБЯЗАТЕЛЬНЫЕ”, дальше могут не читать. Без этого ваши шансы нормально настроить момент зажигания сводятся к нулю.
Начать необходимо с проверки «трех соответствий». В момент зажигания должны находиться относительно друг друга в соответствующем (определенном) положении: коленчатый, распределительный валы и валик распределителя.
“При снятой крышке головки наличие «трех соответствий» на «Жигулях» лучше всего проверить по ВМТ четвертого цилиндра. Обычно пишут, если совпадают верхние метки РВ, должны совпадать и нижние метки КВ. В действительности, даже на новых автомобилях, такого совпадения не бывает. При совмещении верхних меток метка на шкиве коленчатого вала «уходит вниз», по ходу вращения коленчатого вала от длинной метки (ВМТ) по наружному диаметру шкива до 10 мм.”
“По мере вытягивания цепи (ремня) метки «расходятся» еще больше. Несовпадение меток является своеобразной страховкой для случая, когда по каким-либо причинам нарушено соответствие положений коленчатого и распре­делительного валов. Известно, что при заклинивании двигателя гнутся выпускные клапаны, так как максимум их подъема ближе к ВМТ поршня (для «Жигулей» — 111°, максимум подъема впускных клапанов до ВМТ — 250° по коленчатому валу).”

Итак, от теории к практике:
1. Выставляем ВМТ 4-го цилиндра, проверяем, что риски КВ и РВ совпали.
2. Если верхние метки РВ совпадают, можно определить расхождение нижних меток (метка шкива и длинная метка на крышке).
«При наружном диаметре шкива коленчатого вала равном 150 мм, 10° по меткам (рис. 41) дают примерно 13 мм по шкиву. При числе зубьев звездочки 19 поворот на 1 зуб соответствует 19° (360°:19=18,95°), на шкиве это — 25 мм. Если метка шкива ушла «вниз» на 18,5 мм (от длинной мет­ки по шкиву), то перестановка цепи на 1 зуб «поднимет» ее до второй мет­ки (25 — 18,5=6,5 мм), что вполне приемлемо.»
В моем случае именно так и было, метка РВ совпадает, а метка КВ совпадает со второй риской на корпусе двигателя. Звезду на 1-н зуб переставляли когда-то давно. Поэтому мне ничего делать не пришлось, лишь убедиться в соответствии реальной картины с документацией.

Два соответствия определили, теперь следующий шаг.
3. Проворачиваем КВ до совпадения со средней риской (начальный угол опережения 5 градусов, 92-95 бензин).
4. В таком положении проверяем положение бегунка трамблера. Наружный его контакт должен смотреть СТРОГО на контакт 4-го цилиндра. Ни левее, ни правее, а прямо на него.
“Если явного «соответствия» нет, поступаем следующим образом. Отворачиваем гайку крепления распределителя, вынимаем его из гнезда, вращением валика корректируем положение ротора, придерживая его, вновь вставляем в гнездо распределитель. Проведенная установка распределителя является предварительной, окончательная установка будет проведена при проверке момента зажигания.”

Теперь можно приступить к точной настройке момента зажигания. Это можно сделать с помощью
-стробоскопа (не описываю, т.к. инструкция к нему прилагается)
-прибора МД-1 (этот вариант рассмотрим)
-самодельного индикатора (упрощенная версия прибора МД-1, реализована лишь одна функция – проверка датчика холла.)

d792642s 960

ВАЖНО! В инструкции к МД-1 сказано, что при выставлении КВ и РВ, контакт трамблера должен смотреть на 1-й контакт крышки. Применительно к ВАЗ 2106 данное условие ошибочно. Контакт должен смотреть на 4-й контакт крышки трамблера!

Этап 2. Установка момента зажигания с помощью МД-1
1. Проворачиваем КВ до совпадения со средней меткой (угол 5 градусов)
2. Отключаем коммутатор и подключаем прибор МД-1
3. Снимаем крышку трамблера и проверяем положение наружного контакта бегунка. Он может смотреть либо на 1-й, либо на 4-й контакт крышки трамблера. Если еще не собрали двигатель, то смотрим на РВ. Если метка РВ совпала, то наружный контакт бегунка должен смотреть ИСКЛЮЧИТЕЛЬНО на 4-й контакт в крышке трамблера. Если были выполнены условия, описанные выше, то контакт бегунка будет смотреть строго на контакт крышки.
4. Ослабляем гайку трамблера ключом на 13.
5. Включаем зажигание и смотрим на светодиод “Д”
6. Нужно сперва поймать положение, в котором светодиод не горит, а затем плавно по полмиллиметра поворачивать корпус трамблера обратно. Чем медленней это делать, тем точнее настройка.
7. Как только светодиод загорелся – фиксируем корпус гайкой.

ВАЖНО! Если пропустили момент загорания светодиода, то нужно вернуть положение трамблера обратно, как минимум на сантиметр, и начать заново. Еще нужно брать во внимание, что валик трамблера двигателем вращается по часовой стрелке. Иначе говоря, регулировку начинаем с положения, когда датчик холла смотрит на шторку и поворачиваем его против часовой стрелки, пока не загорится светодиод. Если вы правильно поймали момент зажигания, то середина датчика холла будет смотреть на начало выреза в шторке.
Несмотря на хорошую точность данного метода, лучше использовать стробоскоп, т.к. он показывает угол на запущенном двигателе. После первых поездок (после установки зажигания) необходимо вновь проверить зажигание.

У меня смещение было аж на целый зуб, при проверке трех соответствий, а датчик холла смотрел на конец прорези шторки. Не знаю, как я с таким зажиганием пол лета ездил… Проделав данные операции, машина завелась с пол оборота. Разницу заметил сразу, машина заводится с пол-оборота и на педаль газа отзывается лучше.
По отзывам, что я находил, данный метод настройки момента зажигания не уступает стробоскопу. Можете проверить сами.
Что касается индикатора, то он подключается в разъем датчика холла. Его можно изготовить самому.

44f4642s 960

Этап 3. Проверка на дороге
Что со стробоскопом, что без него, заключительным этапом обязательно будет дорожный тест.
1. Прогреваем двигатель и выезжаем на ровный участок дороги (в машине только водитель, груза нет)
2. Набираем скорость 50км/ч
3. Включаем 4-ю передачу и утапливаем педаль газа в пол
«Если при резком нажатии на педаль «газа» разгон сопровождается нез­начительной и кратковременной детонацией, то зажигание считается установленным правильно. Легкая детонация должна продолжаться лишь 2—3 с. Если детонации нет совсем или динамика (раз­гон, максимальная скорость) автомобиля неудовлетворительна, следует увеличить угол опережения зажигания. Если детонация сильная, то угол опережения зажигания, как правило, необходимо уменьшить.» Т.е. для уменьшения угла поворачиваем трамблер по часовой стрелке, а для увеличения, если детонации нет, против часовой. У меня детонации после МД-1 не было, я провернул трамблер на 2 деления против часовой стрелки.

Источник

Электронный комутатор зажигания с регулировкой для китайского мопеда своими руками

d3b0432s 100

Как известно Китайская электроника известна своей простотой и дешевизной со всеми вытекающими последствиями а именно долговечности и не всегда эффективной работе.
Задумал сделать электронный коммутатор для мопеда Дельта с регулировкой. За основу взята классическая схема конденсаторного зажигания CDI, которое используется в подобного типа мототехнинике.

5070ce9s 960

Не буду вдаваться в подробности работы схемы, отмечу только что подстроечным резистором R4′ настраивается оптимальный режим работы двигателя под нагрузкой и на холостом ходу. В общем ним нужно настроить работу двигателя, чтоб тот работал стабильно на холостом ходу и на максимальных оборотах.
Схема подключения в разйоме зажигания приведена ниже

a470ce9s 960

4270ce9s 960

Схема собрана на текстолитовой плате, которая обвернута в термоусадку, сверху герметично замотана целлофаном.

8a70ce9s 960

ea70ce9s 960

ba70ce9s 960

После установки данной схемы на мопед, двигатель стал работать лучше работать на холостом ходу, стал приеместей разгон, уменьшился расход топлива.

Творческих успехов и удачи всем на дорогах!

Источник

Изготавливаем стробоскоп для установки зажигания своими руками

Автомобильные владельцы с солидным опытом знают ценность правильно выставленного начального момента зажигания и корректной работы вакуумного и центробежного регуляторов опережения зажигания. Если произвести неправильную установку момента зажигания (кстати значительная роль может быть сыграна даже минимальным, казалось бы, отклонением на 2-3 градуса), это может стать причиной повышенного расхода топлива, потери мощности и перегреву силового агрегата и даже сокращению его эксплуатационного срока. Поэтому умение осуществлять проверку и регулировать систему зажигания – это очень ценные навыки для водителей, хотя данные процессы вполне относятся к категории достаточно сложных.

Если автовладелец всё же решился реализовывать данную операцию, то первым инструментом, который ему пригодится, будет стробоскоп, для установки зажигания, призванный упрощать процесс обслуживания вышеуказанной системы.

Как работает стробоскоп для зажигания?

Стробоскоп зажигания – очень простой и доступный для приобретения прибор, который можно достать в любом специализированном магазине, к тому же он существенно облегчит Вам жизнь, как автовладельцу. Ведь имея в наличии такой прибор, даже начинающий водитель проверит и отрегулирует начальную установку момента зажигания за считанные минуты, а также проверит центробежный и вакуумный регуляторы на наличие каких-либо повреждений.

Данный прибор работает по принципу стробоскопического эффекта, суть которого поясняется примерно так: если объект, который движется в темноте, осветить кратковременной яркой вспышкой, то он покажется визуально застывшим в положении, в котором его и застала вспышка.

Принцип работы данного прибора заключается в стробоскопическом эффекте, суть которого можно пояснить примерно таким образом: если движущийся темноте объект осветить яркой и при этом короткой вспышкой, то он начнет визуально казаться застывшим именно в том положении, в котором вспышка его и застала. Например, если освещать вспышками колесо, которое вращается с частотой, равной его вращательной частоте, то можно визуально его запечатлеть.

Это легко заметно благодаря положению определённой метки.

Для установки момента зажигания запустите двигатель на холостых оборотах, а с помощью стробоскопа осветите ранее обговоренные метки. Одна из них, именуемая подвижной расположена на коленвале, хотя может на шкиве привода генератора или на маховике, а другая на корпусе двигателя. Вспышки случаются одновременно с моментом искрообразования в запальной свече цилиндра.

Во время вспыхивания должно быть видно обе метки. Причём здесь действуют следующие условия: если метки располагаются точно друг напротив друга, тогда угол опережения зажигания будет наиболее оптимальным, а если произойдёт смещение подвижной метки, то положение прерывательно-распределительного механизма необходимо откорректировать пока не совпадут метки.

Основным элементом стробоскопа является импульсная стробоскопическая лампа безынерционного типа. Данный механизм построен таким образом, что вспышки происходят в момент появления искры в свече первого цилиндра. Результатом этого будет расположение установочных меток вместе с другими элементами мотора, вращающимися с синхронно с коленчатым валом, в результате освещения их стробоскопической лампой кажутся недвижимыми. Благодаря этому можно осуществлять контроль над правильной установкой изначального момента зажигания.

Из всего описанного и сказанного выше уже складывается представление о характеристике работы стробоскопа для зажигания. Заодно объясним и его устройство: после подключения выводов к аккумулятору, заработает преобразователь напряжения, являющий собой мультивибратор симметрического типа. Изначальное напряжение распределяется далее с делителей на транзисторной базе, которые начинают приоткрываться, но один из них всегда делает это гораздо быстрее другого.

А это влияет на поведение другого транзистора, который в результате этого закрывается, что объясняется прикладыванием запирающего напряжения с обмоток к его базе. Затем транзисторы начинают открываться друг за другом, а это становится причиной подключения к аккумуляторной батареи одной или другой трансформаторной обмотки поочерёдно. В данный момент во вторичных обмотках возникает напряжение с прямоугольной формой и частотой около 800 Герц. Его значение прямо пропорционально количеству витков, имещихся в обмотке.

В момент происхождения непосредственного искрообразования, высоковольтный импульс первого цилиндра поступает на электроды, которые расположены на лампе стробоскопа, путём конденсаторов и специальной вилки разрядника от распределительного гнезда.

При всём этом, накопленная конденсатором энергия, преобразовывается в световую от вспышки лампы. После разряда конденсаторов затухает лампа, но они получают заряд от резисторов до напряжения около 450 Вольт. Таким путём закончена подготовка к очередной вспышке.

Резисторы служат ещё и для предотвращения закорачивания в обмотках в момент вспыхивания лампы. Призвание диода – защищать транзистор преобразователя, если стробоскоп подключен в неверной полярности. Благодаря разряднику обеспечивается получение необходимого напряжения высоковольтного импульса, во избежание осуществления возгорания лампы. При этом ни расстояние, ни давление в камере сгорания, ни свечи не играют никакой роли. Благодаря именно разряднику обеспечивается бесперебойная работа стробоскопа даже с закороченными электродами в свече зажигания.

Как видно, принцип работы, достаточно простого с виду механизма довольно сложен. Но это ни в коем случае не означает, что в нём нельзя разобраться. Также важно понять, как выставить зажигание при помощи стробоскопа и попробовать самолично осуществить данный процесс.

Характеристики стробоскопа для установки зажигания

Стробоскоп наделён определённым набором характеристик, который отличает его от других приборов, делая его поистине уникальным и необходимым. Среди уникальности, к примеру, можно назвать следующее: источником питания для стробоскопа могут быть собственные элементы питания и бортовая автомобильная сеть. Отсюда автоматически вытекает вопрос, какой же способ является лучшим – автономное питание или за счёт сети автомобиля.

Рекомендуем: Как поменять салонный фильтр на Chevrolet Niva?

Скажем лишь то, что эта данность абсолютно не принципиальная, но всё же первый способ ограничивает Вас от необходимости протягивания проводов за прибором. Ещё одной отличительной характеристикой стробоскопа является значение минимальной частоты вспышек, которые он выдаёт.

Она должна быть аналогичной с частотой вращения коленчатого вала, вращающегося на максимальных оборотах. Наиболее распространённые стробоскопы с частотой в 50Гц. Как правило, стробоскоп не может долго функционировать, осуществляя вспышки, а связано это с особенной конструкцией ламп. Зачастую, он способен корректно непрерывно работать не более десяти минут. Эти показатели указываются в инструкции к прибору. Во избежание непредвиденных ситуаций, стробоскопу и, в первую очередь, его лампам, необходимо давать отдых продолжительностью равной времени его работы за один сеанс.

Регулировка зажигания с помощью стробоскопа

Итак, если у Вас имеется сей уникальный инструмент, для выставления зажигания, тогда не стоит всё откладывать «в долгий ящик», а пора приступать к проверке и регулировке зажигания.У каждого трамблёра есть две системы корректировки – центробежный и вакуумный корректоры. Во время работы силового агрегата угол опережения зажигания не постоянен, на что влияет количество оборотов и нагрузка. Это необходимо для оптимального процесса сгорания топлива, а оптимально значит мощно и максимально экономично.Итак начинаем нашу проверку. Поехали.

1. Прогрейте двигатель и нормально отрегулируйте холостые обороты или чуть ниже. Снимите вакуумную трубку, которая идёт от вакуумника трамблёра к карбюратору. В таком режиме проверьте и отрегулируйте установку начального угла опережения зажигания. Подробные данные об этом Вы найдёте в мануале к Вашему транспортному средству.

2. Увеличив обороты двигателя до двух тысяч, Вы должны будете наблюдать и увеличение угла напряжения примерно на семь градусов, если этого не произошло, значит проблема с центробежным регулятором. Основной причиной, зачастую, может быть заклинивание центробежного механизма, что зачастую случается в следствии его окисления. Кроме этого часто происходит поломка пружин механизма.

3. Проверить работу вакуумного регулятора опережения зажигания будет посложнее из-за того, что его работа связана с работой карбюратора. Основным условием корректной работы вакуумного регулятора является отсутствие (на холостых оборотах) разряжения в трубке, пролегающей между вакуумником и карбюратором. Оно должно возникать только с повышением оборотов двигателя.

Своевременное появление разряжения в трубке проверяется кончиком языка к концу трубки, который соединяется с вакуумником трамблёра. Если карбюратор не в состоянии обеспечить своевременное появление разряда в трубке, то вакуумный корректор попросту не сможет нормально функционировать, даже если механизм трамблёра полностью исправен.

При правильной работе карбюратора и своевременном разряжении, соответственно, приступайте к проверке работоспособности самого вакуумника. Подсоедините вакуумную трубку снова к трамблёру и осветите метку стробоскопом. С увеличивающимися оборотами метка будет уходить выше в два раза, чем до этого с отсоединённой трубкой.

Суммарный угол опережения включает в себя три величины: начальный угол опережения зажигания, дополнительное опережение, которое создаётся центробежным регулятором, и дополнительное опережение от вакуумника. Он может достигать и 30 градусов. Всё зависит от режима работы силового агрегата, его модели и характеристик трамблёра.

У распределителей зажигания имеются свои определённые заданные характеристики функционирования.

Определить их параметры точно и соответсвие их стандарту можно определить лишь на специальных стендах. В проделываемом Вами случае можно лишь определить работает или нет та либо иная схема. Конечно, опытный профессионал может и визуально определить насколько правильны характеристики работы трамблёра, а в случае чего и отрегулировать их, но это не так просто и для этого нужен определённый опыт, который нарабатывается долгими годами практики.

И последнее, что мы хотим сказать по данной теме. Если одна из систем коррекции опережения зажигания или обе не работают, то автомобиль заметно теряет в разгонной динамике, могут появиться «провалы» и увеличиться топливный расход.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Инструкция по изготовлению прибора для установки зажигания

Простой способ

В сети есть много разных схем, практически все из них легко собираются и не требуют больших затрат на материалы. Рассмотрим одну из наиболее популярных схем создания стробоскопа в домашних условиях. Из деталей нам понадобится:

Все детали можно приобрести на радиорынке или в специализированном магазине. В качестве корпуса для прибора можно использовать старый фонарик или вспышку от фотоаппарата.

lazy placeholder

Схема сборки автомобильного стробоскопа в корпусе от старого фонарика

lazy placeholder

Чтобы собрать самодельный автомобильный стробоскоп, можно использовать недорогие радиодетали и медный провод

Использовать такое устройство можно не только для установки зажигания. Им можно проверить свечу, настроить работу регулятора.

Самодельная приблуда с использованием таймера

Стробоскоп на основе таймерных устройств имеет более сложную схему. Его главное преимущество в стабильных световых импульсах, которые не зависят от напряжения батареи. Прибор также может работать в режиме тахометра, для этого необходимо просто изменить положение регулятора.

lazy placeholder

Таймерные стробоскопы также можно использовать в качестве тахометра

Совет: В схеме лучше использовать диоды из серии КД521. Если вы не нашли таймера отечественного производства, можно взять зарубежный аналог NE555.

Схема изготовления прибора на светодиодах

В основе такого устройства лежит микросхема 155АГ1, она запускается импульсами с отрицательной полярностью. В схеме используются сопротивления R1, R2, R3, которые ограничивают амплитуду входного сигнала. Требуемая длительность импульсов устанавливается ёмкостью С4 и резистором R6. При стандартных настройках это 2 мс. В качестве источника питания будет использоваться аккумуляторная батарея автомобиля.

lazy placeholder

Светодиодные стробоскопы имеют высокую надежность и могут использоваться даже при ярком дневном освещении

lazy placeholder lazy placeholder lazy placeholder

Цифровой прибор для проверки и установки момента зажигания

Этот прибор пригодится автомобилистам, эксплуатирующим автомобили с четырёхтактными карбюраторными двигателями. В отличие от современных двигателей с непосредственным впрыском топлива, где момент зажигания смеси в цилиндре задаёт контроллер управления двигателем, не требующий периодической проверки и подстройки, в карбюраторных двига­телях в этот процесс вовлечён ряд механических устройств — прерыватель-распределитель, вакуумный и центробежный регу­ляторы. Стабильность их работы невысока, поэтому контроль правильности установки момента зажигания в различных режи­мах работы двигателя весьма актуален, особенно с учётом солидного возраста автомобилей с такими двигателями.

Прибор компактен, не содержит де­фицитных деталей, не требует налаживания и может быть легко повто­рён даже начинающим радиолюбите­лем. Он позволяет измерять частоту вращения коленчатого вала двигателя, угол опережения зажигания (УОЗ), про­верять функционирование вакуумного и центробежного регуляторов УОЗ.

Как известно, в классической систе­ме зажигания четырёхтактного двигате­ля поджиг горючей смеси (далее будем использовать термин «искра») в каждом из его цилиндров производится один раз за рабочий цикл — два оборота ко­ленчатого вала. Измерение частоты вращения коленвала может быть выпол­нено одним из двух методов:

Недостатком первого метода можно считать большую длительность измере­ния, ввиду чего результат приходится ждать довольно долго. Второй метод даёт результат измерения за доли се­кунды, однако его недостаток — сущест­венные флюктуации результата от измерения к измерению. Причин этому немало, например, нестабильная рабо­та регулятора УОЗ и свечей. Разброс результатов, измеренный автором в ходе работы над прибором, достигал ±10…25% среднего значения. Безу­словно, нельзя доверять результатам, полученным с такой погрешностью, да и наблюдать мелькание цифр на индика­торе утомительно. Оптимальным я счи­таю первый метод с уменьшенной дли­тельностью счёта либо второй метод с усреднением результатов нескольких измерений. По сути, это одно и то же.

Рассматриваемый прибор измеряет частоту вращения в оборотах в минуту, подсчитывая число искр в одном ци­линдре за 6 с и умножая это число на 20. Результат получается с дискретностью 20 об/мин, что вполне достаточно для правильной установки УОЗ в карбюра­торном двигателе.

Все приведённые рассуждения спра­ведливы для системы зажигания клас­сического четырёхтактного двигателя, работающего по принципу одной искры в цилиндре за рабочий цикл (два оборо­та). Однако в одно- и двухцилиндровых двигателях ситуация чаще всего иная — искры в каждом цилиндре формируются на каждом обороте коленвала. Одна из них (рабочая) — в конце такта сжатия, а вторая (холостая) — в конце такта вы­пуска. Это позволяет отказаться от до­вольно ненадёжного элемента — высо­ковольтного распределителя зажига­ния. Так сделано, например, в системе зажигания автомобиля «Ока». Прибор корректно работает с такими система­ми зажигания, обеспечивая при этом вдвое меньшую дискретность отсчёта (10 об/мин). Это же позволяет ему ра­ботать и с двухтактными двигателями.

УОЗ — один из важнейших парамет­ров, определяющий экономичность, мощность и экологичность работы дви­гателя. Для проверки правильности ра­боты вакуумного и центробежного регу­ляторов УОЗ в приборе предусмотрен стробоскоп. Запускающие импульсы для него снимают с высоковольтного прово­да свечи первого цилиндра трансформа­торным датчиком тока искрового разря­да. Проверка сводится к наблюдению за поведением нанесённых на освещаемый импульсами стробоскопа шкив коленва­ла меток при изменении положения дроссельной заслонки Полностью мето­дика такой проверки изложена в ин­струкции по эксплуатации автомобиля.

Основные технические характеристики

При измерении частоты вра­щения коленвала:

При измерении угла опере­жения зажигания:

Напряжение питания, В …… 7…16

Потребляемый ток (в им­пульсе), мА ….. 650.

Схема прибора представлена на рис. 1. Он построен на микроконтрол­лере ATmega168-20PU, тактируемом от внутреннего RC-генератора частотой 8 МГц. Производитель гарантирует пре­дельное отклонение этой частоты от номинальной не хуже ±3 % во всём рабочем интервале температуры, что более чем достаточно для проводимых измерений. Все функции прибора реа­лизованы программно.

lazy placeholder

Импульсы с датчика (трансформато­ра) тока Т1, надетого на высоковольт­ный провод, соединяющий распредели­тель зажигания с одной из свечей зажи­гания, поступают на вход усилителя- формирователя, состоящего из резис­торов R2, R4, R5, R9, конденсатора С2, диодов VD2 и VD3, транзистора VT2. В случае пробоя изоляции высоковольт­ного провода есть вероятность попада­ния высокого напряжения во входную цепь прибора. Для защиты элементов этой цепи от повреждений применён газовый разрядник F1 с напряжением пробоя 90 В.

Положительная полуволна сигнала с датчика открывает транзистор VT2. Спа­дающий перепад напряжения на его коллекторе инициирует запрос преры­вания INTO или INT1 (в зависимости от режима работы прибора). По запросу вызывается программная процедура, реализующая установленный режим.

Для измерения УОЗ прибор оснащён стробоскопом — импульсным источни­ком световых импульсов на светодио­де EL1 (EDEW-1LS6 мощностью 1 Вт). Микроконтроллер управляет им с помо­щью электронного ключа на транзисто­ре VT1. Для сужения светового луча на светодиод надета коллиматорная линза EDOL-AA10-М15. Она сужает луч до 10 град., что существенно увеличивает яркость светового пятна. Резистор R8 ограничивает амплитуду импульса тока светодиода.

Результаты измерений прибор ото­бражает на четырёхразрядном семи­элементном светодиодном индикаторе с общими катодами разрядов HG1 (FYQ-3641AG-11). Аноды элементов индикатора подключены к выходам РВ0—РВ6 микроконтроллера через резисторы R12—R18, ограничивающие импульсный ток элементов до 12…13 мА. Уровнями напряжения на катодах разрядов индикатора микро­контроллер управляет через ключи на транзисторах VT3—VT6, так как нагру­зочная способность выходов микро­контроллера недостаточна для непо­средственного управления ими.

Органы управления прибора — кноп­ки SB 1 и SB2, которые используют при измерении УОЗ, и переключатель режи­мов работы SA1. Перемычка S1 предна­значена для установки типа проверяе­мой системы зажигания. При искре на каждом обороте коленвала она должна быть установлена, а при одной искре на два оборота — снята.

Все узлы прибора питают стабилизи­рованным напряжением +5 В. Первич­ное питание — бортсеть автомобиля с номинальным напряжением 12 В. При­бор сохраняет работоспособность при напряжении в бортсети от 7 до 16 В. Ди­од VD1 предохраняет прибор от подачи питания в неправильной полярности.

Прибор может работать в двух режи­мах: стробоскопа-тахометра («Ч») и из­мерения УОЗ («У»).

В режиме «Ч» (переключатель SA1 в нижнем по схеме положении) прибор по информации с датчика фиксирует иск­ры в цилиндре и в момент каждой из них формирует на выходе PD7 импульс высокого логического уровня длитель­ностью около 900 мкс. Этот импульс открывает транзистор VT1, и мощный светодиод EL1 излучает световой им­пульс той же длительности. Параллель­но с этим микроконтроллер ведёт под­счёт искр и через каждые 6 с вычисляет частоту вращения коленвала, после чего выводит результат расчёта на ин­дикатор HG1.

Проиллюстрировать логику работы микроконтроллера в этом режиме с помощью линейного алгоритма сложно, потому что в его программе широко используются прерывания, процедуры обработки которых асинхронно вклиниваются в главный цикл программы. Он начинается после старта программы (рис. 2) и повторяется многократно до выключения питания прибора. В этом цикле микроконтроллер читает пере­менную N, хранящую измеренное зна­чение частоты вращения коленвала, и отображает его на индикаторе. В начале своей работы программа присваивает этой переменной значение 1234, которое и отображает­ся на индикаторе до получе­ния результата первого из­мерения, что происходит лишь по окончании форми­руемого Таймером 1 интер­вала счёта длительностью 6 с.

lazy placeholder

С началом интервала счёта программа разблоки­рует внешнее прерывание INTO и обрабатывает каждую искру, как показано на рис. 3. Поступивший с датчика искры импульс генерирует запрос прерывания INTO. Процедура его обра­ботки запрещает реакцию на следую­щие запросы этого прерывания, фор­мирует сигнал включения светодиода EL1, запускает Таймер 2, инкрементиру­ет значение переменной, хранящей число зафиксированных искр.

Запрет прерываний INTO, запросы которых могут поступить через неболь­шие промежутки времени после перво­го, необходим для обеспечения работо­способности прибора при проверке систем зажигания с «длинной» искрой и многоискровых, а также для устранения влияния колебательных переходных процессов, возникающих в высоко­вольтных узлах системы зажигания по окончании искрового разряда. Продол­жительность запрета — 10 мс с момен­та начала обработки принятого запроса.

Канал сравнения А Таймера 2 на­строен на отсчёт интервала времени 900 мкс. По его истечении он генериру­ет запрос прерывания, обработка кото­рого гасит светодиод EL1. Таймер про­должает счёт до генерации запроса прерывания каналом сравнения В, настроенным на отсчёт интервала 10 мс. Процедура обработки этого пре­рывания останавливает и обнуляет Тай­мер 2, снимает флаги внешних преры­ваний и разрешает прерывание INTO. С этого момента микроконтроллер готов к приёму и обработке сигнала следующей искры.

Описанные действия выполняются на фоне главного цикла программы, в котором происходят чтение и отображе­ние на индикаторе измеренной частоты вращения коленвала двигателя. Через 6 с после запуска канал сравнения В Таймера 1 формирует запрос прерыва­ния, процедура обработки которого рассчитывает частоту вращения и при­сваивает её значение переменной N. Сам Таймер 1 будет обнулён и переза­пущен — начнётся следующий интервал счёта искр и последующего расчёта частоты вращения коленвала.

Только при следующем повторении главного цикла программы рассчитан­ное значение частоты вращения будет прочитано из переменной N и отобра­жено на индикаторе. Учтите, что на время обработки запросов прерывания выполнение главного цикла приоста­навливается. На рис. 2 это не показано, чтобы не усложнять его.

Для точного измерения УОЗ с дис­кретностью 1 град, при любой заранее установленной частоте вращения пред­назначен режим «У» (переключатель SA1 в верхнем по схеме положении). В этом режиме микроконтроллер, имея ин­формацию о частоте вращения коленва­ла, предварительно рассчитывает вре­мя At, за которое коленвал пово­рачивается на 1 град., затем начинает фиксировать искры в цилиндре и фор­мировать на каждую из них импульс стробоскопа. Однако, в отличие от ре­жима «Ч», имеется возможность задер­живать вспышку относительно искры. Длительность этой задержки можно изменять шагами по At, увеличивая её нажатиями на кнопку SB1 и уменьшая нажатиями на кнопку SB2. Методику измерения поясняет рис. 4. На нём схематично представлен шкив коленва­ла, на котором нанесена подвижная метка. Совмещение этой метки с непо­движной меткой на блоке цилиндров означает, что поршень первого цилинд­ра находится в ВМТ.

Но если вращающийся шкив коленвала работающего двигате­ля осветить импульсами стробоскопа, которые сов­падают по времени с искра­ми в первом цилиндре, подвижная метка будет вид­на на некотором угловом расстоянии от неподвижной (рис. 4, а), равном текущему значению УОЗ.

Если теперь нажать на кнопку SB1 и этим ввести задержку формирования импульсов стробоскопа от­носительно искры на время,

за которое коленвал повернётся на один градус, подвижная метка визуаль­но переместится на градус ближе к неподвижной (рис. 4, б). Продолжая нажатия на кнопку SB1, можно добиться совмещения этих меток (рис. 4,в). «Перебор» компенсируют нажатиями на кнопку SB2. Прибор показывает на инди­каторе введённую задержку в градусах. Когда метки совмещены, число на инди­каторе равно УОЗ.

В начале работы в режиме «У» про­грамма рассчитывает задержку на гра­дус на основании значения частоты вра­щения коленвала, полученного перед этим в режиме «Ч». Затем она разреша­ет обработку прерываний INT1 и выпол­няет главный цикл, в котором отобража­ет на индикаторе значение, хранящееся в переменной n.

Реакция на искру в этом режиме — запрос прерывания INT1, процедура обработки которого, показанная на рис. 5, блокирует дальнейший приём запросов этого прерывания с той же целью, с какой блокировались запросы прерывания INTO в режиме «Ч», и запус­кает Таймер 1. Содержимое регистра ОС1А канала А Таймера 1 пользователь может изменять шагами, равными дли­тельности поворота коленвала на один градус. Через заданный таким образом интервал времени таймер генерирует запрос прерывания. Процедура его об­работки запустит генерацию импульса стробоскопа аналогично тому, как было описано при рассмотрении режима «Ч». Разница лишь в том, что будут разблокированы запросы прерывания от INT1, а не от INTO.

В режиме «У» прибор частоту враще­ния коленвала не измеряет. Поэтому её необходимо измерить в режиме «Ч», а затем перевести прибор в режим «У». Информация о частоте будет передана в процедуру измерения УОЗ автомати­чески. Так как в режиме «У» программа считает частоту вращения постоянной, любое её изменение в ходе измерения УОЗ приводит к ошибке. Относительная погрешность измерения УОЗ равна от­носительному отклонению фактической частоты в момент измерения от образ­цовой, измеренной в режиме «Ч».

Опрос состояния кнопок происходит с частотой около 1 Гц, поэтому нажи­мать на них чаще не имеет смысла. Допустимо удерживать нужную кнопку нажатой. Её действие будет повторять­ся с частотой опроса в течение всего времени удержания.

Прибор смонтирован на трёх печат­ных платах. Чертёж первой из них (ос­новной) показан на рис. 6. Чертёж пла­ты управления (находящиеся на ней две кнопки, переключатель и два резистора обведены штрихпунктирной рамкой в левом нижнем углу рис. 1) изображён на рис. 7. Справа на рис. 1 также в штрихпунктирной рамке находятся детали, размещённые на плате индикации. Её чертёж — на рис. 8.

lazy placeholder

Контактные пло­щадки плат, помеченные одинаковыми буквами, должны быть соединены между собой отрезками плоского кабеля. Столь сложная конструкция обуслов­лена стремлением автора уместить при­бор в корпусе размерами 90x50x30 мм. Платы размещены в нём, как показано на рис. 9. Если такой необходимости нет, прибор можно собрать и на одной плате.

lazy placeholder

В приборе использованы в основном компоненты для поверхностного монта­жа типоразмера 1206 (конденсатор С3 типоразмера 1210). Исключение — мик­роконтроллер DD1, интегральный ста­билизатор DA1, индикатор HG1, конден­сатор С2 и газовый разрядник F1. Кон­денсатор С2 должен иметь номиналь­ное напряжение не ниже 100 В. Кнопки SB1, SB2 — тактовые, переключатель SA1 — движковый на два положения.

Для микроконтроллера на плате установлена панель, из которой уда­лено гнездо 3. Микроконтроллер ATmega168-20PU может быть заменён на Atmega88 или Atmega328 с такими же буквенными индексами без измене­ния топологии печатной платы. Замена потребует, однако, перекомпиляции программы под соответствующий мик­роконтроллер. Конфигурацию микро­контроллера программируют в соот­ветствии с рис. 10.

lazy placeholder

Транзистор ВС847С можно заме­нить любым кремниевым структуры n-p-n с коэффициентом передачи тока базы не ниже 50. Вместо транзисторов IRLML0040 подойдут любые полевые с изолированным затвором, каналом n-типа и допустимым током стока не менее 1 А.

Вывод 3 светодиодного индикатора FYG-3641AG-11, для которого на соот­ветствующей плате нет отверстия, за­гнут параллельно плате. Упомянутый индикатор может быть заменён любым аналогичным с общими катодами раз­рядов и обеспечивающим достаточную яркость свечения при токе элемента не более 20 мА.

Интегральный ста­билизатор снабжён ребристым теплоот­водом с площадью ох­лаждающей поверх­ности 20 см2. Све­тодиод EL1 укреплён на предназначенном для него теплоотводе «звезда» диаметром 19 мм.

Датчик-трансфор­матор тока Т1 изго­товлен из П-образного ферритового магнитопровода с маг­нитной проницаемо­стью 2000…3000. Размер магнитопровода особого значе­ния не имеет. Главное, чтобы в его окно мож­но было пропустить высоковольтный провод, соединяющий распределитель зажигания со свечой (это первичная обмотка), и осталось бы место для вторичной обмотки из 120 витков лакированного провода диа­метром 0,15 мм.

Эскиз конструкции трансформатора показан на рис. 11. Половины магнитопровода не склеены, а сжаты прищеп­кой, сделанной из обрезков стеклотекс­толита (рис. 12). Это позволяет легко надевать трансформатор на провод свечи и снимать его. Вполне допустимо вместо П-образного магнитопровода применить ферритовое кольцо, раско­лов его на две приблизительно равные части. Грани магнитопровода перед намоткой следует притупить, а место расположения вторичной обмотки по­крыть изолирующей плёнкой. Готовую обмотку необходимо защитить изоля­ционным лаком. Её подключают к входу усилителя-формирователя экраниро­ванным проводом длиной 50… 100 см.

Кроме индуктивного датчика, с при­бором можно использовать и гораздо более простой по конструкции, ёмкост­ный. В общем случае он представляет собой металлическую пластину, плотно прижатую к проводу свечи. Пластина и провод образуют конденсатор, через который импульсы поступают на вход прибора. От пластины датчика экрани­рованный провод должен идти к точке соединения разрядника F1, резистора R2 и конденсатора С2. Экран соеди­няют с общим проводом только со сто­роны прибора.

Плата за простоту конструкции ёмкостного датчика — его весьма низ­кая помехоустойчивость. Трансфор­матор тока реагирует практически толь­ко на изменение тока в проводе, кото­рый проходит через окно его магнитопровода, остальные электромагнитные явления, которых в моторном отсеке автомобиля более чем достаточно, его «не интересуют». Ёмкостный же датчик охотно реагирует на изменения напря­жения не только в проводе, на который он установлен, но и в других цепях Поэтому каждый экземпляр такого дат­чика требует индивидуальной подбор­ки элементов входной цепи усилите­ля-формирователя. В частности, по­стоянный резистор R2 следует заме­нить подстроечным сопротивлением 100…120 кОм, включённым по схеме реостата. Вращая его движок, добей­тесь устойчивой работы прибора, после чего замените подстроенный резистор постоянным ближайшего номинала.

Автор испытывал прибор с ёмкост­ным датчиком, сделанным из обычного зажима «крокодил», зубцы на губках ко­торого были загнуты внутрь, а пружина ослаблена, чтобы исключить поврежде­ние изоляции провода свечи. Результа­ты в целом удовлетворительные, однако датчик довольно капризен и реагирует, например, на расстояние до проводов других свечей и до корпуса двигателя.

Правильно собранный из исправных деталей прибор не требует налажива­ния (за исключением варианта с ём­костным датчиком, о чём было сказано выше). Проверить правильность сборки и функционирования прибора несложно. Для этого следует включить режим «Ч» и подключить прибор к источнику питания с напряжением 7…16 В (датчик к проводу свечи не подключать, чтобы исключить поступление импульсов на вход прибора).

После включения прибора свето­диод EL1 вспыхивать не должен. Пер­вые 6 с на индикаторе должно отобра­жаться число 1234. Если цифры следу­ют в другом порядке, то разряды инди­катора перепутаны. При искажённом начертании цифр следует искать ошиб­ки в подключении элементов индика­тора к микроконтроллеру. По истечении 6 с в младших разрядах индикатора должны появиться три нуля — этим про­веряется гашение незначащего нуля в старшем разряде.

Далее следует перевести прибор в режим «У». Индикатор должен показать минус ноль градусов, а кнопки SB1 и SB2 должны быть заблокированы. На этом проверка закончена.

Работают с прибором в сле­дующем порядке:

Если измеренная частота вращения при неизменном режиме работы двигателя су­щественно изменяется от из­мерения к измерению, то индуктивный датчик (транс­форматор тока) следует снять с провода свечи и установить обратно, повернув на 180°.

Если необходимо измерить УОЗ, то прибором в режиме «Ч» предваритель­но измеряют частоту вращения колен­вала, а затем переключают прибор в режим «У» и измеряют УОЗ по методи­ке, описанной выше.

Следует помнить, что в режиме из­мерения УОЗ погрешность практически полностью определяется стабильно­стью частоты вращения коленвала дви­гателя. Приемлемой максимальной по­грешностью следует считать 8… 10%, поэтому и стабильность поддержания оборотов двигателя не должна быть хуже этого значения. Если системы двигателя не обеспечивают достаточно точного поддержания частоты его вра­щения, их следует проверить, а при не­обходимости отремонтировать.

(Файлы печатных плат прибора и программа микроконтроллера)

Автор: А. САВЧЕНКО, пос. Зеленоградский Московской обл. Источник: Радио №4/2016

Особенности настройки устройства

Чтобы пользоваться девайсом, его необходимо отрегулировать. Стробоскоп для настройки должен быть отстроен должным образом, чтобы выдавать наиболее точные параметры. В первую очередь, производится регулировка подстроечного резистора R4, что позволяет выставить необходимый визуальный эффект. При вращении ручки регулятора вы заметите, что снижение сигнала может привести к недостаточному освещению меток, а если сигнал будет увеличен, то это приведет к размытости. Соответственно, в ходе первой настройки угла опережения зажигания своими руками следует правильно настроить наиболее оптимальную длительность световых вспышек.

Есть еще один момент, который необходимо учитывать — длина кабеля, который проходит от печатной платы к контроллеру, должна быть не более полуметра. Для контроллера можно использовать 10 см медного проводника, который следует припаять к центральной жиле кабеля. Когда осуществляется подключение, он наматывается на изолированную часть высоковольтника тремя витками.

Стробоскопический метод измерения угла опережения зажигания

Углом опережения зажигания (УОЗ)называется угол поворота коленчатого вала двигателя от момента подачи искры в цилиндр, до момента прихода поршня этого цилиндра в верхнюю мертвую точку.

Графически УОЗ представлен на рис. 29-4, в виде шкива 1 коленчатого вала двигателя с меткой 2. На рисунке метка 2 показана в тот момент, когда на свечу первого цилиндра двигателя подается высокое напряжение и между её электродами проскакивает искра. Здесь же показана метка 3 на блоке двигателя.

При совмещении метки 2 на шкиве 1 с меткой 3 на блоке двигателя поршень первого цилиндра приходит в верхнюю мертвую точку (ВМТ). Тогда угол поворота Δj коленчатого вала двигателя от момента искрообразования в его первом цилиндре до момента совмещения меток 2 (на шкиве) и 3 (на блоке) и есть угол опережения зажигания — УОЗ.

Следовательно, для измерения УОЗ необходимо регистрировать два события: момент подачи искры в первый цилиндр двигателя и момент совмещения метки 2 на шкиве, с меткой 3 на блоке цилиндров.

Рис. 29-4. Метки на шкиве и блоке двигателя автомобиля Измерение УОЗ осуществляется при помощи стробоскопа. Стробоскоп – это электронный прибор с лампой – вспышкой, который позволяет наблюдать вращающиеся (движущиеся) детали в неподвижном состоянии в свете вспышек лампы
. Стробоскоп (рис. 29-5, а) подключается к автомобильной бортовой сети. Преобразователь напряжения ПН стробоскопа преобразует напряжение бортовой сети ± 12В в высокое напряжении +400В, для питания лампы-вспышки ИСЛ, и низкое, +5В для питания электронных

Индуктивный датчик ИДстробоскопаустанавливается на высоковольтный провод свечи первого цилиндра.

Стробоскоп работает следующим образом. При работе двигателя и подаче высокого напряжения в его первый цилиндр индуктивный датчик ИД

б) Рис. 29-5 Структурная схема электронного стробоскопа для измерения угла опережения зажигания – а) и диаграммы его работы – б)
а)

преобразует его в электрический сигнал Uид (см. рис. 29-5, б).

Как известно, в момент времени в первый цилиндр подается искра. Об этом свидетельствует резкое возрастание напряжения Uид. Затем сигнал от индуктивного датчика ИД поступает в фильтр Ф, который отфильтровывает из него короткий максимальный импульс напряжения в момент времени . Этот импульс напряжения поступает в формирователь стандартных импульсов ФИ1. При поступлении короткого импульса от фильтра в формирователь ФИ1 на его выходе, в момент времени вырабатывается один стандартный импульс заданной длительности tфи и амплитуды Uимп.

lazy placeholder lazy placeholder lazy placeholder

Установка УОЗ стробоскопом

Как пользоваться самодельным девайсом для регулировки УОЗ:

Регулировка зажигания при помощи стробоскопа

Правильно выставленный угол опережения зажигания — залог стабильной устойчивой работы всего мотора. Более того, от зажигания напрямую зависит и расход топлива. В данной статье предлагаю рассмотреть вариант оптической настройки мотора вашего автомобиля с применением стробоскопа.

Для этой процедуры вам потребуются следующие инструменты:

2. Обычный набор автомобильных инструментов.

3. Перчатки диэлектрические.

Теперь более подробно.

Прежде всего, необходимо выгнать машину из гаража. Желательно, чтобы не было никаких световых помех, к примеру, слепящего или бликующего солнечного света, лучше всего делать данную работу во второй половине дня. Внимательно осмотрите стробоскоп на предмет отсутствия на его корпусе каких-либо механических повреждений. Следует понимать, что от контакта с цепью высоковольтного преобразователя стробоскопа вы можете получить серьезные травмы.

Стробоскоп своими руками — экономия материальных средств

Если у владельца автомобиля есть время и желание сэкономить существенную сумму средств, то такой стробоскоп можно запросто сделать самостоятельно. Для этих целей понадобиться приобрести определенные детали, большая часть которых уже находиться в гараже большинства автовладельцев.

lazy placeholder

Простая конструкция автомобильного стробоскопа может быть создана из обычного фонарика, простых и маломощных светодиодов и даже такой детской забавы как лазерная указка. Несмотря на простоту конструкции и в чем-то оригинальный внешний вид, такое устройство, сделанное собственными руками, прослужит также долго как и фирменный стробоскоп.

lazy placeholder

Такое устройство для регулировки системы зажигания автомобиля наиболее необходима для тех машин, которые имеют карбюратор. Использование стробоскопа в таких автомобилях обуславливается тем, что регулировка зажигания в них производиться особым способом. Регулировка угла опережения зажигания, который находится на контактной группе трамблера и фактически всех распределителей не имеющих контактов, очень сложна и обойтись без специального устройства абсолютно невозможно. Благодаря самостоятельно сделанному стробоскопу можно всего за 10 минут произвести регулировку угла опережения зажигания с максимальной точностью.

Регулировка системы зажигания автомобиля является крайне важной. Благодаря этому работа многих систем автомобиля будет более слаженной и транспортное средство сможет работать на высоком уровне. Поскольку стоимость фирменного стробоскопа в автомобильных магазинах существенно велика, то это и стало решающим фактором для создания самостоятельной модели стробоскопа.

lazy placeholder lazy placeholder lazy placeholder lazy placeholder

Что такое стробоскоп и зачем он нужен двигателю

Опережение зажигания — один из важнейших параметров, определяющих работу двигателя. Если неправильно выбрать момент зажигания топливно-воздушной смеси в бензиновых двигателях или момент впрыска топлива в камеру сгорания в дизелях, то мотор будет работать из рук вон плохо. Как установлено, зажигание и впрыск необходимо производить чуть ранее, чем цилиндр дойдет до верхней мертвой точки — поэтому параметр и назван опережением зажигания. Но почему так?

Дело в том, что сгорание любого топлива происходит не моментально, а занимает какой-то промежуток времени, поэтому при поджигании топлива еще до ВМТ «по-настоящему» оно начнет гореть только у ВМТ, поэтому передаст поршню накопленную энергию (в виде давления расширяющихся отработанных газов) с максимальной эффективностью. Двигатель разовьет большую мощность и будет работать без перебоев.

Если зажечь топливо непосредственно в ВМТ, поршень получит не всю энергию, а работа двигателя в целом будет неудовлетворительной. А если, напротив, зажечь топливо слишком рано, то поршню из-за давления газов будет трудно дойти до ВМТ. В ряде случаев такой двигатель даже и завести будет невозможно.

Опережение зажигания определяется для каждого двигателя еще на заводе, а чтобы в дальнейшем двигатель можно было отрегулировать, на него наносятся установочные метки — одна неподвижная, непосредственно на двигателе, а вторая подвижная, на маховике или шкиве привода генератора (она, как нетрудно понять, показывает скорость вращения коленвала). В определенные моменты времени эти метки занимают определенное положение друг относительно друга, а определить это положение как раз и помогает стробоскоп.

Стробоскоп-вспышка 12V с тахометром и вольтметром ОРИОН

Стробоскоп для дизельных и бензиновых двигателей интеллектуальный ОРИОН

Стробоскоп автомобильный ОРИОН

Стробоскоп JTC

Особенности заводских стробоскопов и принцип их работы

Точно отрегулировать зажигание без использования стробоскопа довольно сложно. Такой прибор существенно ускоряет процесс настройки, лампа сигнализирует о появлении искры, что позволяет правильно установить угол опережения зажигания. Несмотря на то, что заводские приборы работают эффективно и точно, многие автолюбители не спешат их покупать. Главным сдерживающим фактором можно назвать высокую цену стробоскопов. В большинстве моделей используется дорогостоящая газоразрядная лампа, её замена приравнивается к покупке нового прибора.

Само устройство можно сделать своими руками, используя простые и доступные материалы. Существует несколько хороших схем изготовления, которые помогут сэкономить на покупке заводских аналогов. Для примера, можно ознакомиться с ценами на самые популярные стробоскопы, которые есть в продаже:

Самодельные приборы делаются из фонариков, светодиодов или лазерной указки. При низкой себестоимости (около 500 рублей) прибор будет работать не менее надёжно и эффективно.

Устройство и принцип действия стробоскопа

Стробоскоп — прибор, предназначенный для наблюдения за быстропротекающими процессами в реальном времени. В простейшем случае стробоскоп представляет собой устройство, формирующее частые короткие световые вспышки, с помощью которых и достигается стробоскопический эффект.

Стробоскопический эффект сводится к следующему. Если на какое либо движущееся (в том числе и вращающееся) тело направить короткие и частые вспышки света, то для нашего глаза тело как бы «замрет» — мы будем видеть не плавное движение, а прерывистое, состоящее из множества статичных «картинок».

Если с помощью стробоскопа наблюдать повторяющееся движение — например, метку на вращающемся шкиве или маховике двигателя, то при определенных частотах вспышек (частота вспышек должна быть кратна частоте вращения шкива) метка для нашего глаза замрет на одном месте, и именно благодаря этому эффекту существует возможность регулировки опережения зажигания.

Характеристика стробоскопа

Итак, вы решили произвести настройки зажигания на своем авто, но понятия не имеете, как выставлять и производить регулировку УОЗ. Для того, чтобы выставленный угол не приносил дискомфорта водителю во время езды, можно использовать стробоскоп для зажигания.

Принципиальная схема

lazy placeholder

Принципиальная схема для разработки стробоскопа

Ниже представлена схема стробоскопа. Если вы не знаете, как сделать стробоскоп своими силами на светодиодах, можете воспользоваться этой схемой. В конечном итоге получится самый простой стробоскоп, однако сделанный девайс позволит в полной мере произвести регулировку всех необходимых параметров.

В схеме устройства необходимо выделить несколько основных частей:

Принцип работы

Итак, в чем заключается принцип работы. Стробоскоп для установки зажигания своими руками в любом случае питается от батареи АКБ. Когда происходит замыкание выключателя, триггер вступает в работу. В это время на инверсных выводах 2 и 12 в соответствии со схемой образуется высокий потенциал, а на прямых выводах 1 и 13 — низкий. Сами конденсаторы С3 и С4 питаются от резисторов.

lazy placeholder

Стробоскоп для регулировки угла зажигания

Сигнал с контроллера, проходя через дифференцирующую цепь, передается на вход DD1.1, который является одновибратором, что в конечном итоге способствует его переключению. Поле этого начинается переразряд С1, заканчивающийся переключением триггера. В конечном итоге, одновибратор начинает реагировать на сигналы с контроллера, образовывая не первом выводе прямоугольные сигналы.

Что касается второго одновибратора DD1.2, то его принцип работы аналогичный — он позволяет снизить длительность сигнала в десять раз на выходе 13. Данный компонент работает под нагрузкой от усилительного каскада транзисторов, открывающихся на время сигнала. Что касается тока, проходящего через эти элементы, то он ограничивается с помощью резисторов R6-R8, его показатель должен быть не более 0.8 ампер.

Этот показатель не особо большой, поскольку:

Соответственно, эксплуатация более ярких диодных элементов даст возможность во многом понизить ток нагрузки в результате повышения показателя сопротивления. Это сопротивление увеличивается на компонентах схемы R6-R8.

Печатная плата и детали сборки

lazy placeholder

Пример печатной платы для сборки устройства

Собрать свой собственный стробоскоп — не проблема. При небольшом бюджете можно использовать недорогие детали, не при необходимости вы можете создать более современное устройство.

После того, как плата для устройства будет готова, необходимо выбрать место для ее установки. К примеру, это может быть корпус переносного фонаря, но он должен быть оснащен отверстием в корпусе для монтажа регулятора R4. В принципе, можно использовать практически любой корпус, главное, чтобы на него можно было без проблем установить регулятор. Подробнее о том, как выглядит самодельный стробоскоп для настройки зажигания, сделанный на основе лазерной указки, вы можете узнать из видео (автор видео — Максим Соколов).

Как видите, в целом соорудить такой девайс — не проблема. Достаточно иметь определенные знания в области электроники и следовать действиям, описанным в инструкции. Если в ходе сборки вы допустите ошибки, то возможно, устройство будет работать некорректно. Если у вас нет опыта в изготовлении подобных устройств, то возможно, есть смысл задуматься над покупкой нового стробоскопа.

Принцип работы

Схема стробоскопа питается от автомобильного аккумулятора. В момент замыкания выключателя SA1, триггер DD1 переходит в исходное состояние. При этом на инверсных выходах (2, 12) появляется высокий потенциал, а на прямых (1, 13) – низкий потенциал. Конденсаторы С3, С4 заряжены через соответствующие резисторы.

Импульс с датчика, пройдя через дифференцирующую цепь, поступает на тактовый вход первого одновибратора DD1.1, что приводит к его переключению. Начинается перезаряд С3, который через 15 мс заканчивается очередным переключением триггера. Таким образом, одновибратор реагирует на импульсы с датчика, формируя на выходе (1) прямоугольные импульсы. Длительность выходных импульсов с DD1.1 определяется номиналами R3 и С3.

Второй одновибратор DD1.2 работает аналогично первому, уменьшая длительность импульсов на выходе (13) в 10 раз (примерно до 1,5 мс). Нагрузкой для DD1.2 служит усилительный каскад из транзисторов, которые открываются на время импульса. Импульсный ток через светодиоды ограничен исключительно резисторами R6-R8 и в данном случае достигает величины 0,8 А.

Не стоит пугаться столь большого значения тока. Во-первых, его импульс не превышает 1 мс, со скважностью в рабочем режиме не менее 15. Во-вторых, современные светодиоды обладают гораздо лучшими техническими характеристиками в сравнении с их предшественниками из 2000 года, когда эта схема впервые получила практическое применение. Тогда нужно было поискать светодиоды с силой света в 2000 мкд. Сейчас белый LED (от англ. Light-emitting diode) типа C512A-5 мм от ]Cree[/anchor] с углом рассеивания 25° способен выдать 18000 мкд при постоянном токе в 20 мА. Поэтому использование сверхъярких светодиодов позволит значительно снизить ток нагрузки путём увеличения сопротивления R6-R8. В-третьих, время пользования стробоскопом обычно не превышает 5-10 минут, что не вызывает перегрев кристаллов излучающих диодов.

Как на Алиэкспресс найти и заказать стробоскоп по сходной цене и бесплатной доставкой

Алиэкспресс — самая популярная торговая площадка во всем мире, благодаря которой миллионы человек способны совершать покупки качественного товара по значительно низким ценам. Этот сайт работает на протяжении последних 6 лет, в течении которых ежедневно добавляются миллионы товаров ежедневно. Многие продавцы завлекают к покупкам в своих магазинах за счет низких цен, проведения постоянных акция, а также осуществления доставки по всему миру на бесплатной основе.

Многие автовладельцы проводят самостоятельный ремонт и диагностику своих автомобилей при помощи специального оборудования. Многие такие специнструменты можно запросто приобрести в каталоге всемирно известной торговой площадке. Для того чтобы приобрести заводской стробоскоп по сходной цене и с бесплатной доставкой необходимо зайти на главную страницу Алиэкспресс, после чего нажать кнопку «Смотреть все» в верхней левой части экрана.

lazy placeholder

Далее на открывшейся страницы всех разделов и категорий товаров следует выбрать «Автомобили и мотоциклы«, после чего перейти в подраздел «Инструменты, техническое обеспечение и уход«. Далее следует воспользоваться фильтром, находящимся в левой части экрана и выбрать «Средства диагностики«, где будет нужная категория «Стробоскопы«.

lazy placeholder

На сегодняшний день это весьма небольшая категория, однако здесь запросто можно приобрести оптимальный вариант стробоскопа.

Настройка

В схеме установлен подстроечный резистор R4, регулировкой которого можно добиться нужного визуального эффекта. Вращая ручку регулятора можно наблюдать, что уменьшение импульса тока ведёт к недостатку освещенности меток, а увеличение – к размытости. Поэтому во время первого запуска стробоскопа необходимо подобрать оптимальную длительность вспышек.

Длина экранированного провода от печатной платы к датчику не должна превышать 0,5 м. В качестве датчика подойдет 0,1 м медного проводника, припаянного к центральной жиле экранированного провода. В момент подключения его наматывают на изоляцию высоковольтного провода первого цилиндра автомобиля, делая 3 витка. Для повышения помехоустойчивости намотку производит максимально близко к свече. Вместо медного проводника можно взять зажим типа «крокодил», который также следует припаять к центральной жиле, а его зубья слегка загнуть внутрь, чтобы не повредить изоляцию.

Средняя цена фабричного изделия и его недостатки

Заводской вариант прибора имеет некоторые недостатки, которые значительно уменьшают полезность такого приобретения.

lazy placeholder

На карбюраторах выставлять зажигание всегда удобнее стробоскопом

Во-первых, стоимость фабричных стробоскопов весьма немала. Так цифровая модель Multitronics C2 обойдется покупателю в суму около 900-1000 р. Более функциональный стробоскоп AstroL5 будет стоить уже 1300 р. Focus F1 — модель, подходящая для обслуживания как бензиновых, так и дизельных двигателей — потребует 1700 р., ее более «продвинутый» собрат Focus F10 — 5600 р.

Во-вторых, зачастую производители используют в конструкции своей продукции дорогостоящую газоразрядную лампу. Она имеет ограниченный ресурс и может через непродолжительное время потребовать замены, что не просто ударит по карману, а окажется равносильным покупке нового стробоскопа.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто