Потери в машине постоянного тока
Общие положения
При работе электрической машины часть потребляемой ею энергии теряется бесполезно и рассеивается в виде тепла. Мощность потерянной энергии называют потерями мощности или просто потерями.
Потери в электрических машинах подразделяются на основные и добавочные. Основные потери возникают в результате происходящих в машине основных электромагнитных и механических процессов, а добавочные потери обусловлены различными вторичными явлениями. Во вращающихся электрических машинах основные потери подразделяются на 1) механические потери, 2) магнитные потери, или потери в стали, и 3) электрические потери.
К электрическим потерям относятся потери в обмотках, которые называют также потерями в меди, хотя обмотки не всегда изготавливаются из меди; потери в регулировочных реостатах и потери в переходном сопротивлении щеточных контактов.
Рассматриваемые в данной теме вопросы большей частью являются общими для машин постоянного и переменного тока.
Механические потери
Механические потери pмх состоят из 1) потерь в подшипниках, 2) потерь на трение щеток о коллектор или контактные кольца и 3) вентиляционных потерь, которые включают в себя потери на трение частей машины о воздух и другие потери, связанные с вентиляцией машины (мощность кинетической энергии отходящего воздуха и потери в вентиляторе). В ряде случаев электрические машины охлаждаются не воздухом, а водородом или водой, и соответствующие потери также относят к вентиляционным.
Потери в подшипниках pподш вычисляют по соотношениям, которые рассматриваются в курсах деталей машин и проектирования электрических машин. Эти потери зависят от типа подшипников (качения или скольжения), от состояния трущихся поверхностей, вида смазки и так далее. Важно подчеркнуть, что при работе данной машины эти потери зависят только от скорости вращения и не зависят от нагрузки.
Потери на трение щеток могут быть вычислены по формуле
где kтр – коэффициент трения щеток о коллектор или контактные кольца (kтр = 0,15 – 0,3); fщ – удельное (на единицу площади) давление на щетку; Sщ – контактная поверхность всех щеток; vк – окружная скорость коллектора или контактных колец.
Потери на вентиляцию pвент зависят от конструкции машины и рода вентиляции. Подробности расчета этих потерь рассматриваются в курсах проектирования электрических машин. В случае если вентиляция осуществляется не встроенным в машину, а отдельно стоящим вентилятором, потери на вентиляцию машины включают в себя потребляемую мощность привода вентилятора.
В самовентилируемых машинах со встроенным центробежным вентилятором потери на вентиляцию в ваттах иногда вычисляются приближенно по следующей эмпирической формуле:
где Q – количество воздуха, прогоняемого через машину, м³/с; v – окружная скорость вентиляционных крыльев по их внешнему диаметру, м/с.
Так как Q также пропорционально v, то из выражения (2) следует, что потери pвент пропорциональны третьей степени скорости вращения машины.
Общие механические потери
Как следует из изложенного, в каждой данной машине потери pмх зависят только от скорости вращения и не зависят от нагрузки. В машинах постоянного тока мощностью 10 – 500 кВт потери pмх составляют соответственно 2 – 0,5% от номинальной мощности машины.
Магнитные потери
Магнитные потери pмг включают в себя потери на гистерезис и вихревые токи, вызванные перемагничиванием сердечников активной стали. Для вычисления этих потерь сердечник подразделяется на части, в каждой из которых магнитная индукция постоянна. Например, в машинах постоянного тока вычисляются отдельно потери в сердечнике якоря
Здесь p1,0/50 и p1,5/50 – удельные потери в стали на единицу массы при частоте f = 50 Гц и индукциях соответственно B = 1,0 Т и B = 1,5 Т; Bа и Bz – средние значения индукции в спинке якоря и зубцах; Gса и Gcz – массы стали спинки якоря и зубцов; kда и kдz – коэффициенты, учитывающие увеличение потерь вследствие обработки стали (наклеп при штамповке, замыкание листов в пакете), из-за неравномерности распределения индукции и несинусоидальности закона изменения индукции во времени.
В машинах постоянного тока можно принять kда = 3,6 и kдz = 4,0.
К магнитным потерям относят также такие добавочные потери, которые зависят от значения основного потока машины (потока полюсов) и вызваны зубчатым строением сердечников. Эти потери иногда называют также добавочными потерями холостого хода, так как они существуют в возбужденной машине уже при холостом ходе.
К указанным потерям в машинах постоянного тока относятся прежде всего поверхностные потери pпов в полюсных наконечниках, обусловленные зубчатостью якоря. Ввиду наличия зубцов и пазов на вращающемся якоре магнитная индукция в каждо точке поверхности полюсного наконечника пульсирует (смотрите рисунок 1) с частотой
будучи максимальной, когда против рассматриваемой точки находится зубец якоря, и минимальной, когда против этой точки находится паз якоря. Вследствие этого в полюсных наконечниках индуктируются вихревые токи, причем они протекают только в тонком поверхностном слое, так как fz имеет порядок тысячи и более герц. Эти потери зависят от 1) величины пульсации, которая больше при открытых пазах на якоре, 2) частоты пульсаций fz и 3) толщины листов стали полюсов и степени их изолированности друг от друга на поверхности наконечника полюса.
Если пазы имеются также в полюсных наконечниках машины постоянного тока (при наличии компенсационной обмотки), то в зубцах якоря и полюсах в результате их взаимного перемещения возникают пульсации магнитного потока. Потоки в зубцах максимальны, когда зубец якоря расположен против зубца полюса, и минимальны, когда против зубца расположен паз. Частота этих пульсаций также велика. При этом возникают пульсационные потери pпульс в зубцах и поверхностные потери также на внешней поверхности якоря.
Подобные же поверхностные и пульсационные потери, вызванные зубчатым строением сердечников и зависящие от основного магнитного потока, возникают также в машинах переменного тока. Потери pпов и pпульс вычисляются по формулам, которые приводятся в курсах проектирования электрических машин.
К добавочным потерям холостого хода относятся также потери, которые возникают в проволочных бандажах, обмоткодержателях и в других деталях при вращении в магнитном поле полюсов.
Общие магнитные потери
Электрические потери
Электрические потери pэл в каждой обмотке вычисляют по формуле pэл = I² × r. Сопротивление обмотки зависит от температуры. Поэтому ГОСТ 25941-83 предусматривает определение потерь в обмотках при приведении их к рабочей температуре (75°C для классов обмоток A, E и B и 115°C для классов F и H). В нормальных машинах постоянного тока имеются две электрические цепи: цепь якоря и цепь возбуждения. Поэтому обычно рассматривают потери в цепи якоря pэл.а и в цепи возбуждения pэл.в.
Потери в обмотках можно выразить также через плотность тока в обмотке j и массу обмотки (без изоляции) G. Действительно,
где l – общая длина проводников обмотки; s – сечение проводника; γ – плотность проводника; ρ – удельное сопротивление.
Например, для меди γ = 8,9 г/см³ и при 75°C ρ = 1/4600 Ом×мм ²/см. Если выразить, далее, j в А/мм², то получим
Таким образом, формула (7) определяет потери в ваттах в медной обмотке массой G кг при 75°C и при плотности тока j А/мм².
К электрическим потерям относят также потери в регулировочных реостатах и потери в переходных сопротивлениях щеточных контактов. Потери в переходных сопротивлениях щеточных контактов для щеток одной полярности вычисляются по формуле
где ΔUщ – падение напряжения на один щеточный контакт. Так как ΔUщ зависит сложным образом от разных величин и факторов, то для упрощения расчетов, согласно ГОСТ 11828-86, «Машины электрические вращающиеся. Общие методы испытаний», принимается для угольных и графитовых щеток ΔUщ = 1 В и для металлоугольных щеток ΔUщ = 0,3 В.
Добавочные потери
Добавочные потери pд. К этой группе относят потери, вызванные различными вторичными явлениями при нагрузке машины. Поэтому указанные потери, зависящие от тока нагрузки, называют иногда также добавочными потерями при нагрузке.
В машинах постоянного тока одна часть рассматриваемых потерь возникает вследствие искажения кривой магнитного поля в воздушном зазоре при нагрузке под влиянием поперечной реакции якоря. В результате этого магнитный поток распределяется по зубцам и сечению спинки якоря неравномерно: с одного края полюсного наконечника индукция в зубцах и спинке якоря уменьшается, а с другого края увеличивается. Такое неравномерное распределение потока вызывает увеличение магнитных потерь, подобно тому как неравномерное распределение тока в проводнике (например, в результате поверхностного эффекта) вызывает увеличение электрических потерь. Вследствие такого неравномерного распределения потока увеличиваются также поверхностные потери в полюсных наконечниках. При наличии компенсационной обмотки рассмотренная часть добавочных потерь практически отсутствует.
Другая часть добавочных потерь в машинах постоянного тока связана с коммутацией. При изменении во времени потоков рассеяния коммутируемых секций (смотрите рисунок 2) в проводниках обмотки индуктируются вихревые токи. Добавочный ток коммутации также вызывает дополнительные потери. Существуют также другие причины возникновения добавочных потерь (вихревые токи в крепежных деталях и тому подобное).
Вследствие сложной природы добавочных потерь формулы для их вычисления получаются сложными и, кроме того, не особенно точными. Экспериментальное определение этих потерь также затруднительно. Поэтому на практике добавочные потери чаще всего оценивают на основе опытных данных в виде определенного процента от номинальной мощности. Согласно ГОСТ 11828-86, эти потери для машин постоянного тока при номинальной нагрузке принимаются: при отсутствии компенсационной обмотки равными 1,0% и при наличии компенсационной обмотки равными 0,5% от отдаваемой мощности для генератора и подводимой мощности двигателя. Для других нагрузок эти потери пересчитываются пропорционально квадрату тока нагрузки.
Все виды добавочных потерь, не связанные непосредственно с электрическими процессами в цепях обмоток машины, покрываются за счет механической мощности на валу машины.
Суммарные, или полные потери
Суммарные, или полные потери pΣ представляют собой сумму всех потерь:
В качестве иллюстрации в таблице 1 приводятся данные о потерях в машине постоянного тока при номинальной нагрузке.
Потери в генераторе постоянного тока 500 кВт, 460 В, 375 об/мин.
Содержание материала
Во время работы часть потребляемой электрической машиной энергии расходуется на нагрев ее деталей. Поэтому механическая энергия на валу двигателя всегда меньше, чем потребляемая им электрическая энергия, а электрическая энергия, которую отдает в сеть генератор, меньше, чем механическая энергия, затрачиваемая на вращение его ротора. Разность между потребляемой и отдаваемой энергиями не может быть использована для полезной деятельности. Эта часть энергии как бы «теряется». Поэтому ее называют потерями и для удобства сравнения с мощностью машины оценивают за единицу времени и выражают в единицах мощности.
Потери в машинах в зависимости от вызывающих их физических процессов подразделяют на электрические, магнитные, механические и вентиляционные. Те части машины, в которых возникают потери, нагреваются. Электрические потери вызывают нагрев обмоток статора и ротора проходящими по ним токами; магнитные потери — нагрев магнитопровода из-за вихревых токов, наводящихся в нем переменным магнитным потоком, и перемагничивания стали; механические потери — нагрев подшипников из-за трения при работе машины. К вентиляционным потерям относят мощность, которую надо затратить для вращения вентилятора, охлаждающего электрическую машину, и на трение вращающихся частей машины о воздух. Все другие виды потери, возникающие при работе электрической машины, называют добавочными. Они невелики и обычно не превышают нескольких процентов от суммы всех потерь в машине.
Коэффициентом полезного действия (кпд) электрической машины, так же как и всякой другой машины, называют отношение отдаваемой мощности к потребляемой, выраженное в процентах: η=(Р2/Р1)х100. В электрических двигателях Р2 — мощность, которую двигатель передает соединенному с ним механизму, т. е. мощность на валу двигателя, a P1 потребляемая двигателем мощность из электрической сети; в генераторах Р2 — электрическая мощность, отдаваемая генератором в сеть, а Р1 — мощность, затрачиваемая на вращение вала генератора.
Кпд электрических машин очень высок. Он больше, чем в каких-либо других видах машин. Кпд мощных синхронных генераторов — турбогенераторов и гидрогенераторов — превышает 98%. Это значит, что на потери расходуется меньше 2% потребляемой ими энергии пара или воды. С уменьшением мощности машины ее кпд снижается. В машинах средней мощности он уменьшается до 80—90%, а машины мощностью меньше 1 кВт имеют кпд не выше 50—60%.
Каждая электрическая машина рассчитана на работу при определенном напряжении сети, с определенными частотой вращения, током и мощностью. Эти данные называют номинальными и указывают на паспортной табличке, которую укрепляют на корпусе машины. Если электрический двигатель или генератор нагрузить больше, чем указано в паспортной табличке, его нагрузка и ток в его обмотках будет также больше номинального. Электрические потери возрастут, нагрев обмоток увеличится и может превзойти допустимый для их изоляции предел. Изоляция обмоток потеряет электрическую прочность, машина выйдет из строя.
Чтобы снизить нагрев при работе, электрическую машину охлаждают. Наиболее распространено воздушное охлаждение — поток воздуха с помощью вентилятора, установленного на валу машины (см. рис. 1). Машина охлаждается лучше, если вместо воздуха обдувать ее наиболее нагревающиеся части водородом. Водородное охлаждение много сложнее и дороже воздушного, поэтому его применяют лишь в ответственных машинах большой мощности, чаще всего в турбогенераторах.
Еще более интенсивное охлаждение обмоток достигается водой. Обмотки машин с водяным охлаждением выполняются из полых проводников, по внутренним каналам которых пропускается дистиллированная вода. Водяное охлаждение применяют в наиболее крупных гидрогенераторах и турбогенераторах. Все электрические машины общего назначения имеют воздушное охлаждение.
§38. Мощность и коэффициент полезного действия электрических машин
Потери мощности в электрических машинах. Преобразование
механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе сопровождается некоторыми потерями энергии, которые выделяются в виде тепла, нагревая электрическую машину.
Энергетические диаграммы генератора и двигателя (рис. 145) наглядно показывают баланс мощности в этих машинах. Как видно из них, при работе электрической машины возникают потери мощности: электрические, магнитные, механические и добавочные.
Рис. 145. Энергетические диаграммы машины постоянного тока при работе ее в режиме генератора (а) и электродвигателя (б)
нитных элементах магнитной системы (полюсных наконечниках и зубцах якоря) индуцируются вихревые токи, изменяющиеся с высокой частотой (1000 Гц и более) и сосредоточенные, главным образом, на их поверхности. Поэтому потери мощности, созданные этими токами, называют поверхностными.
В машинах, имеющих зубцы на статоре и роторе (машины постоянного тока с компенсационной обмоткой, асинхронные и синхронные), при вращении ротора создаются заметные пульсации индукции в зубцах, что также приводит к образованию вихревых токов и соответствующим потерям мощности. Эти потери называют пульсационными. Магнитные потери возникают также и в стальных бандажах, укрепляющих обмотку якоря, которые при вращении якоря пересекают силовые линии магнитного поля машины. Магнитные потери вызывают нагрев сердечника якоря и полюсов, они почти не зависят от нагрузки машины, но резко возрастают с увеличением частоты перемагничивания, т. е. частоты вращения якоря.
При работе электрической машины под нагрузкой ее проводники, лежащие в пазах ротора и статора, пронизываются продольным и поперечным пазовыми потоками (рис. 147). При вра-
Рис. 146. Распределение индукции в воздушном зазоре машины с зубчатым якорем
Рис. 147. Схема возникновения продольных (а) и поперечных (б) потоков
щении якоря эти потоки индуцируют в проводниках вихревые токи, так как якорь, непрерывно перемещаясь, проходит под различными полюсами, вследствие чего все время изменяются и пронизывающие его продольный и поперечный пазовые потоки. То же происходит и при изменении тока в проводниках, т. е. нагрузки машины.
Для уменьшения добавочных потерь, связанных с этим явлением, в тяговых двигателях стремятся уменьшить высоту проводников обмотки якоря. Для этого проводники разделяют по высоте паза на две-три параллельно соединенные части (рис. 149, а) или располагают их в пазах плашмя (рис. 149,б). При разделении проводников на несколько частей каждую из них изолируют отдельно, для того чтобы вихревые токи замыкались только в пределах одной части.
Коэффициент полезного действия. Соотношение между потребляемой и отдаваемой машиной мощностями характеризуется коэффициентом полезного действия:
К. п. д. стационарных машин постоянного тока колеблется в зависимости от мощности машины в пределах от 0,75 до 0,95 (машины большой мощности имеют более высокий к. п. д.). К. п. д. тяговых двигателей составляет 0,86—0,92, к. п. д. тепловозных генераторов — 0,92—0,94.
Формула для определения к. п. д. принимает вид
Р2 — полезная мощность, отдаваемая машиной (РЭЛ в генераторах и РМХ— электродвигателях) ;
P1 — потребляемая машиной мощность.
Рис. 149. Вертикальное (а) и горизонтальное (б) размещение проводников обмотки якоря в пазах
Рис. 150. Зависимости к.п.д. и потерь мощности от полезной мощности
тока нагрузки I 2 я, начинает превышать прирост полезной мощности, пропорциональный только первой степени от этого тока.
В зависимости от назначения локомотива целесообразно, чтобы максимальное к. п. д. электродвигателей было при различных нагрузках. Это обеспечивают при проектировании благодаря перераспределению отдельных видов потерь мощности. Например, для тяговых двигателей электропоездов, работающих в условиях частых пусков с большими токами, выгоднее, чтобы максимальный к. п. д. располагался в зоне больших нагрузок, что достигают путем снижения электрических потерь. Для двигателей электровозов и тепловозов, работающих преимущественно при токах, меньших номинального, стремятся, чтобы максимальный к. п. д. находился в зоне средних токов. Добиться этого можно уменьшением магнитных и механических потерь.
Нагревание электрических машин. Нагрузочная способность электрических машин в большинстве случаев определяется условиями нагревания, так как повышение температуры является главной причиной, ограничивающей мощность машины при длительных нагрузках. С увеличением нагрузки возрастают потери энергии в машине, увеличивается количество выделяющегося тепла и при чрезмерной нагрузке температура отдельных ее частей может превысить допустимые пределы.
Процессы нагревания и охлаждения в электрических машинах всех типов подчиняются общим законам, так как любую электрическую машину можно в первом приближении рассматривать как некоторое однородное тело. Тепло, выделяющееся в электрической машине, частично затрачивается на повышение температуры машины, а частично отдается в окружающую среду. Чем больше превышение температуры машины 8 над температурой окружающей среды, тем энергичнее идет теплоотдача, поэтому при некотором определенном превышении температуры устанавливается тепловое равновесие; в машине выделяется столько тепла, сколько она отдает в окружающую среду.
Температура, при которой может нсрмально работать электрическая машина, строго ограничена теплостойкостью ее деталей. Особенно чувствительны к повышению температуры изоляционные материалы, применяемые в электрических машинах, в частности, изоляция проводов их обмоток. Поэтому тепловое равновесие в машине должно устанавливаться при такой температуре, которая не вызывает разрушение изоляции, однако постепенный износ изоляции (ее старение) неизбежен. Чем выше допустимая предельная температура отдельных частей, тем меньше срок службы электрической машины вследствие старения ее изоляции и тем менее надежна она в эксплуатации. С другой стороны, чем выше эта температура, тем больше можно нагрузить данную машину. Государственными стандартами на электрические машины установлены предельные значения температуры отдельных их деталей. Эти температуры выбраны на основании опытов. Их соблюдение позволяет обеспечить длительную (примерно 15—20 лет) и надежную работу машины при хорошем использовании материалов.
Нормируются превышения температуры различных частей электрической машины по отношению к температуре окружающей среды. Предельные превышения температуры определяются теплостойкостью изоляции, применяемой в электрической машине (классом изоляции, см. главу X).
Рис. 151. Кривые нагревания и охлаждения электрической машины
Номинальная мощность P? зависит от теплостойкости применяемой изоляции и интенсивности охлаждения. Чем выше интенсивность охлаждения, тем большую мощность можно получить от данной машины без недопустимого превышения ее температуры. Поэтому в большей части электрических машин применяют принудительное охлаждение внутренних деталей воздухом, прогоняемым посторонним вентилятором (при независимой вентиляции) или вентилятором, насаженным на вал самой машины (при самовентиляции).
Таким образом, основными мероприятиями, обеспечивающими увеличение мощности, которую можно получить от электрических машин, является применение более теплостойкой изоляции и усиление интенсивности их охлаждения. Эти меры широко применяют в электромашиностроении, благодаря их использованию удалось в течение последних 50 лет уменьшить примерно в 2—4 раза массу и размеры электрических машин одинаковой мощности.
При работе тяговых двигателей режим их нагрузки резко меняется в зависимости от профиля пути и массы поезда; эти условия работы тяговых двигателей не позволяют характеризовать их работоспособность одним значением номинальной мощности P?. Поэтому наряду с номинальной длительной мощностью для характеристики тяговых двигателей используют также понятия часовой и максимальной мощностей. Часовой мощностью Рч (мощностью часового режима) называется мощность, при которой машина может работать в течение 1 ч с нормально действующей вентиляцией от холодного состояния, не перегреваясь свыше предельной температуры. Эта мощность, так же как и P?, ограничивается условиями нагревания машины, она позволяет судить о временной перегрузочной способности двигателя. Токи, соответствующие номинальным мощностям P? и Рч, называются продолжительным и часовым токами тягового двигателя. В паспортах тяговых двигателей указывают обычно их часовую мощность.
Наибольшей мощностью тягового двигателя называется мощность, которую он может кратковременно отдавать (в течение 1 мин) без недопустимого искрения под щетками и возникновения кругового огня; следовательно, она ограничивается условиями коммутации машины. Отношение максимальной мощности к часовой называют коэффициентом перегрузки, или перегрузочной способностью машины. По стандарту на тяговые двигатели коэффициент перегрузки их должен быть не менее двух. Отношение P?/Рч характеризует интенсивность вентиляции двигателя и называется коэффициентом вентиляции. У современных тяговых машин с независимой вентиляцией этот коэффициент составляет 0,8—0,9.
В эксплуатации работа тяговых двигателей с часовой мощностью может иметь место при движении поезда на подъемах. На руководящих подъемах, движение по которым продолжается менее получаса, реализуется мощность несколько большая, чем часовая. При движении на наибольших незатяжных подъемах мощность двигателей может превышать часовую на 10—15 %. При пуске электровозов и тепловозов токи тяговых двигателей могут превышать часовой ток на 60—80 %.