Понятие о проходимости автомобиля и ее геометрические показатели

Устройство автомобилей

Проходимость автомобиля

Проходимость является одним из основных эксплуатационно-технических качеств автомобиля, определяющих возможность его эффективного использования в тяжелых дорожных условиях. Этим качеством обладают автомобили всех типов, но в зависимости от их назначения в различной степени, поэтому все автомобили по проходимости делят на три основные группы – обычной, повышенной и высокой проходимости.

prohod

Автомобили обычной проходимости предназначены для движения по шоссейным и грунтовым дорогам достаточно хорошего качества. К таким автомобилям относятся автомобили общетранспортного назначения с колесной формулой 4×2, обычными тороидными шинами и оснащены трансмиссией, не предусматривающей блокировку колес или осей.

Автомобили высокой проходимости – это полноприводные автомобили с шинами сверхнизкого давления, арочными шинами или пневмокатками. Они могут иметь специальную компоновку, отличающуюся от характерной компоновки автотранспортных средств, а также оснащаться дополнительными устройствами, повышающими проходимость.

Наиболее характерные виды препятствий, влияющих на проходимость автомобиля, представлены здесь.

На показатели проходимости, по которым сравниваются различные автомобили, влияют различные факторы. Их можно разбить на следующие группы:

Деление это условное, поскольку все перечисленные факторы взаимосвязаны.

Геометрические факторы проходимости автомобилей

Геометрические факторы проходимости определяют способность автомобиля не задевать за препятствия, ограничивающие пространство для его движения. Они определяются конструкцией и компоновкой автомобиля.

Дорожный просвет – это расстояние с (рис. 1) от опорной поверхности (полотна дороги) до низшей точки элементов конструкции автомобиля (не считая колес, конечно же).
Низшей точкой автомобиля обычно является картер ведущего моста, картер маховика двигателя или его поддон, а также какие-либо элементы днища кузова. Дорожный просвет определяет проходимость автомобиля по мягким грунтам и по местности с выступающими неровностями (камнями, пнями, земляными валами, канавами, колеей других автомобилей и т. п.).

prohod 1

База автомобиля L оказывает существенное влияние на возможность преодоления пороговых препятствий, а для многоосных автомобилей – преодоление рвов. prohod 2Чем больше база автомобиля, тем больше высота преодолеваемого порога, больше ширина преодолеваемого рва. Для многоопорных автомобилей преодоление рва определяется также расстоянием между соседними осями.

Радиус колеса r определяет проходимость автомобиля через пороговые препятствия и рвы, а также влияет на сопротивление движения по деформируемым грунтам. Чем больше радиус колеса, тем выше проходимость автомобиля.

Маневренность автомобиля характеризуется минимальным радиусом проворота переднего наружного колеса ρн (рис. 2); шириной полосы движения H (габаритного коридора), которую автомобиль занимает при повороте; максимальным выходом отдельных частей автомобиля за пределы траектории движения переднего и заднего колес (расстояние а и b на рисунке 2).

Тяговые и опорно-сцепные показатели проходимости

Масса автомобиля

Чем меньше масса автомобиля, тем выше его проходимость по мягким грунтам, особенно по грунтам, имеющим коркообразный покров (снег с обледенелой коркой – настом, и т. п.). Масса автомобиля определяет возможность движения по мостам и другим искусственным сооружениям, а также преодоления ледовых переправ.
Кроме того, масса автомобиля оказывает влияние на такие факторы, как удельное давление, удельную мощность, нагрузку на ось и т. п.

Удельная мощность

Удельная мощность автомобиля – это отношение номинальной мощности двигателя к полной массе автомобиля. Удельная мощность влияет на среднюю скорость автомобиля и на его динамические качества (способность быстро разгоняться и преодолевать крутые подъемы и препятствия).
Для современных автомобилей удельная мощность достигает значений 9…15 кВт/т.

Удельное давление колес

Удельное давление колес на дорогу в значительной степени определяет проходимость автомобиля по легко деформируемым грунтам. Удельное давление определяется отношением веса автомобиля, приходящегося на данное колесо к площади контакта колеса с дорогой.
Очевидно, что чем меньше удельное давление, тем меньше колесо будет проваливаться в грунт и тем выше проходимость автомобиля на мягких грунтах.

Динамический фактор

Динамический фактор определяет сопротивление, которое автомобиль может преодолеть на данной передаче. Сопротивлением в данном случае может являться затяжной подъем, противодействие качению колес со стороны дороги, ступенчатое либо какое-нибудь другое препятствие, сильный встречный ветер и т. п.
Чем больше динамический фактор автомобиля, тем выше его проходимость. Для автомобилей повышенной проходимости динамический фактор от 0,67 до 0,8. Этот показатель во многом определяется мощностью двигателя.

Коэффициент сцепной массы

Источник

Что такое геометрическая проходимость автомобиля

prohodimost

Владельцы серьезных внедорожников ругают современные кроссоверы за низкую проходимость – в том числе и геометрическую. И зачастую, надо сказать, вполне заслуженно. Что же такое геометрическая проходимость, и на что она влияет?

Геометрическая проходимость – это совокупность геометрических параметров автомобиля, влияющих на его способность преодолевать препятствия.

Если говорить о полной геометрической проходимости, то она складывается из нескольких групп параметров, которые можно условно обозначить как базовые и внедорожные.

Базовые параметры – это собственно габаритные размеры автомобиля: длина, ширина, высота и размер колесной базы. От них зависят как непосредственные показатели проходимости, так и геометрические внедорожные параметры.

Как уже было сказано выше, геометрическую проходимость во многом определяют именно параметры автомобиля: общая длина и длина колесной базы, высота и ширина автомобиля, а также ширина колеи и длина переднего и заднего свесов. Длина, ширина и высота машины в объяснении не нуждаются, а об остальных можно сказать пару слов. Так, длина колесной базы – это расстояние между осями передних и задних колес, ширина колеи – это расстояние между центрами колес одной оси в пятне контакта с поверхностью, передний свес – это расстояние между осью передних колес и крайней передней точкой автомобиля, а задний свес – соответственно, расстояние между осью задних колес и крайней задней точкой автомобиля.

gabarity 1

Обычно, говоря о геометрической проходимости, рассматривают пять основных параметров:

Кратко поясним каждую из этих величин. Клиренс, или дорожный просвет – это расстояние от самого нижнего элемента автомобиля до поверхности земли. По ГОСТ это расстояние измеряется в центральной части автомобиля, но зачастую наиболее низкорасположенный элемент может быть смещен относительно центра: к примеру, им может являться резонатор глушителя или кронштейн амортизатора. Поэтому обычно клиренсом считают именно расстояние от этой нижней точки до горизонтальной поверхности, на которой стоит автомобиль.

Угол въезда – это угол между горизонтальной поверхностью и линией, проведенной между пятном контакта передних колес и нижней точкой передней части автомобиля. Иными словами, это максимальный угол рампы, на которую может въехать автомобиль, не коснувшись ее передней частью кузова. Несложно догадаться, что он зависит от клиренса и длины переднего свеса: чем больше клиренс и меньше передний свес, тем выше будет угол въезда.

Угол съезда – это то же самое, но для задней части кузова: угол между горизонтальной поверхностью и линией, проведенной между пятном контакта задних колес и нижней точкой задней части автомобиля. Иными словами, это максимальный угол рампы, на которую может въехать автомобиль при движении задним ходом, не коснувшись ее задней частью кузова. Он, очевидно, зависит от клиренса и длины заднего свеса: чем больше клиренс и меньше задний свес, тем больше будет угол съезда.

alfa

Угол рампы, или продольный угол проходимости – это максимальный угол, который может преодолеть автомобиль, не касаясь поверхности днищем. Он, в свою очередь, зависит от сочетания клиренса и длины колесной базы: чем больше клиренс и короче база, чем больше будет угол рампы. Его изменение, к примеру, можно наглядно увидеть в трехдверной и пятидверной версиях Lada 4 X 4: углы въезда и съезда у них одинаковы, а вот угол рампы у трехдверки больше, потому что у нее короче колесная база.

ugol

Угол опрокидывания, или угол поперечной статической устойчивости – это максимальный угол поворота автомобиля вокруг продольной оси, при котором он может не опрокинуться набок. Он зависит от сочетания ширины и высоты автомобиля, ширины его колеи, а также его центра тяжести: чем больше ширина автомобиля и его колеи, меньше высота и ниже центр тяжести, тем выше угол опрокидывания.

ugol oprokidyvania

Кроме этих основных параметров геометрической проходимости есть и еще некоторые, определенно относящиеся к геометрии, но не связанные напрямую с габаритами автомобиля. Это максимальный преодолеваемый уклон, глубина преодолеваемого брода, ходы подвески и артикуляция подвески.

artikulyatsiya

Максимальный преодолеваемый уклон – это предельный угол относительно горизонта той поверхности, по которой способен двигаться автомобиль без посторонней помощи, то есть, предельная крутизна уклона, на который может въехать автомобиль.

Глубина преодолеваемого брода – это максимальная глубина водного препятствия, которое автомобиль может преодолеть без негативных последствий для его технической части. Глубина брода прежде всего ограничена высотой расположения точки забора воздуха двигателем: если вода поднимется до нее, то проникнет во впускной тракт и далее в цилиндры, что может спровоцировать гидроудар и серьезную поломку мотора. У обычных автомобилей точка воздухозабора расположена под капотом, что ограничивает максимальную высоту преодолеваемого брода. Специально подготовленные же внедорожники оснащаются шноркелем – патрубком, выводящим точку забора воздуха на уровень крыши, что позволяет преодолевать более глубокие броды без риска гидроудара.

Ход подвески – это максимальное расстояние, которое может проделать колесо в вертикальном направлении от точки максимального сжатия подвески до момента ее полной разгрузки на грани отрыва от поверхности. Чтобы оценить этот параметр, автомобиль можно загнать одним из передних колес на препятствие такой высоты, чтобы заднее колесо на той же стороне оторвалось от поверхности – это называется диагональное вывешивание, поскольку второе переднее колесо в этом случае тоже будет на грани отрыва от земли. Ну а расстояние по вертикальной оси между высотой подъема переднего и заднего колеса на одной стороне автомобиля в таком положении – это и есть артикуляция подвески. Ходы подвесок колес и артикуляция оказывают косвенное влияние на показатели геометрической проходимости.

hod podveski

Выше мы обозначили и объяснили практически все параметры, характеризующие геометрическую проходимость автомобиля. На практике же, в «бытовом» понимании и беглом сравнении под геометрической проходимостью обычно понимают четыре из них: клиренс, а также углы въезда, съезда и рампы. Для описания возможностей своих кроссоверов и внедорожников автопроизводители используют именно эти цифры – и по большому счету, они вполне исчерпывающе характеризуют эксплуатационные показатели машины.

Однако ключевые слова здесь – «эксплуатационные показатели»: цифры геометрической проходимости – далеко не единственное, что определяет реальную проходимость. На нее в не меньшей степени влияют тип привода (а если привод полный – то тип его технической реализации, наличие межосевой и межколесных блокировок, а также характеристики используемых покрышек. И как показывает практика, именно последние становятся главным ограничением внедорожных способностей современных серийных автомобилей.

Источник

Проходимость автомобиля и её геометрические показатели

Тема 2.9 Проходимость автомобиля и её геометрические показатели. Тяговые и опорно-сцепные показатели проходимости. Влияние конструкции автомобиля на его проходимость. Основные способы увеличения проходимости автомобиля.

Проходимость автомобиля и её геометрические показатели.

Понятие о проходимости автомобиля. Автомобиль работает не только на дорогах с твердым покрытием, но и на грунтовых дорогах, в условиях бездорожья, поэтому он должен обладать хорошей проходимостью.

Проходимость зависит от многих факторов, основными из которых являются опорно-тяговые и геометрические показатели, а также конструкция отдельных агрегатов трансмиссии (дифференциала, коробки передач и др.). На проходимость существенно влияет стиль вождения автомобиля.

В зависимости от проходимости автомобили условно делят на три группы. В основу классификации положена так называемая колесная формула, состоящая из двух цифр: первая цифра соответствует общему числу колес автомобиля, а вторая – числу ведущих колес.

К первой группе относятся автомобили ограниченной (нормальной) проходимости с колесными формулами 4×2 и 6х2, ко второй – автомобили повышенной проходимости с колесными формулами 4×4, 6×4, 6×6, к третьей – автомобили высокой проходимости с колесной формулой 8×8 и специальной компоновкой.

Автомобили с колесными формулами 4×4 и 6×6 специальной конструкции имеют практически такую же проходимость, как автомобили третьей группы.

Геометрические показатели проходимости. Показатели проходимости, которые зависят в основном от габаритных размеров автомобиля и могут быть отражены геометрическим изображением в различных плоскостях, называют геометрическими показателями. Их обычно определяют в статическом положении автомобиля.

Дорожный просвет – это расстояние h между низшей точкой автомобиля и плоскостью дороги (рисунок 2.9.1), которое характеризует возможность движения автомобиля без задевания сосредоточенных препятствий (камней, пней и т.п.).

Углы переднего α и заднего β свесов, а также передний lП и задний lЗ свесы характеризуют проходимость автомобиля по неровным дорогам при въезде на препятствие или при съезде с него, например в случаях наезда на бугор, переезда через канавы и т. п. Для определения углов α и β проводят касательные к внешним окружностям шин передних и задних колес и к наиболее удаленным точкам передней и задней частей автомобиля.

Передний (задний) свес автомобиля определяется расстоянием от крайней точки контура передней (задней) выступающей части автомобиля по длине до плоскости, перпендикулярной опорной поверхности и проходящей через центры передних (задних) колес автомобиля.

Продольный радиус ρпр проходимости определяет очертания препятствия, которое, не задевая, может преодолеть автомобиль. Продольный радиус проходимости равен радиусу окружности, проведенной касательно к внешним окружностям шин и наиболее низкой точке автомобиля, в пределах базы. Чем меньше этот радиус, тем лучше проходимость автомобиля. Уменьшая, например, базу автомобиля, можно уменьшить радиус ρпр.

Поперечный радиус ρпоп проходимости имеет аналогичные радиусу ρпр назначение и метод определения, отличаясь плоскостью и пределами измерения (поперечная плоскость вместо продольной и колея вместо базы).

Маневренностью называют свойство автомобиля поворачиваться на минимальной площади. Она характеризует проходимость автомобиля в горизонтальной плоскости.

Показателями маневренности автомобиля являются:

минимальный радиус поворота наружного переднего колеса (рис. 2.9.2, а);

ширина А полосы движения, которую занимает автомобиль при повороте;

максимальный выход отдельных частей автомобиля за пределы траектории движения наружного переднего и внутреннего заднего колес.

image001image002

Рисунок 2.9.1 – Геометрические показатель проходимости автомобиля

image004

Рисунок 2.9.2 – Показатели маневренности одиночного автомобиля (а); тягача с прицепом (6) и полуприцепом (в):

Максимальная ширина полосы движения, м,

image006

где image008и image010— минимальные радиусы поворота наружного переднего и внутреннего заднего колес, м.

Наиболее маневренны одиночные автомобили со всеми управляемыми колесами.

При буксировании прицепов маневренность автомобиля несколько ухудшается, так как прицеп и полуприцеп смещаются к центру поворота (рис. 2.9.2, б, в) и ширина полосы движения увеличивается. Ширина полосы движения автопоезда растет с увеличением числа буксируемых прицепов, базы прицепа и длины дышла.

Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)

Источник

геометрические характеристики проходимости автомобиля

fYAAAgLuMOA 100

1. ЧТО ТАКОЕ ГЕОМЕТРИЧЕСКАЯ ПРОХОДИМОСТЬ?

Геометрическая проходимость – это совокупность геометрических параметров автомобиля, влияющих на его способность преодолевать препятствия.

Если говорить о полной геометрической проходимости, то она складывается из нескольких групп параметров, которые можно условно обозначить как базовые и внедорожные.

Базовые параметры – это собственно габаритные размеры автомобиля: длина, ширина, высота и размер колесной базы. От них зависят как непосредственные показатели проходимости, так и геометрические внедорожные параметры.

2. КАКОВЫ БАЗОВЫЕ ПАРАМЕТРЫ, ВЛИЯЮЩИЕ НА ГЕОМЕТРИЧЕСКУЮ ПРОХОДИМОСТЬ?

Как уже было сказано выше, геометрическую проходимость во многом определяют именно параметры автомобиля: общая длина и длина колесной базы, высота и ширина автомобиля, а также ширина колеи и длина переднего и заднего свесов. Длина, ширина и высота машины в объяснении не нуждаются, а об остальных можно сказать пару слов. Так, длина колесной базы – это расстояние между осями передних и задних колес, ширина колеи – это расстояние между центрами колес одной оси в пятне контакта с поверхностью, передний свес – это расстояние между осью передних колес и крайней передней точкой автомобиля, а задний свес – соответственно, расстояние между осью задних колес и крайней задней точкой автомобиля.

QSAAAgLMSuA 960

3. КАКОВЫ ОСНОВНЫЕ ПАРАМЕТРЫ ГЕОМЕТРИЧЕСКОЙ ПРОХОДИМОСТИ?
Обычно, говоря о геометрической проходимости, рассматривают пять основных параметров:

— клиренс, или дорожный просвет автомобиля;
— угол въезда;
— угол съезда;
— угол рампы, или продольный угол проходимости;
— угол опрокидывания.

Кратко поясним каждую из этих величин. Клиренс, или дорожный просвет – это расстояние от самого нижнего элемента автомобиля до поверхности земли. По ГОСТ это расстояние измеряется в центральной части автомобиля, но зачастую наиболее низкорасположенный элемент может быть смещен относительно центра: к примеру, им может являться резонатор глушителя или кронштейн амортизатора. Поэтому обычно клиренсом считают именно расстояние от этой нижней точки до горизонтальной поверхности, на которой стоит автомобиль.

Угол въезда – это угол между горизонтальной поверхностью и линией, проведенной между пятном контакта передних колес и нижней точкой передней части автомобиля. Иными словами, это максимальный угол рампы, на которую может въехать автомобиль, не коснувшись ее передней частью кузова. Несложно догадаться, что он зависит от клиренса и длины переднего свеса: чем больше клиренс и меньше передний свес, тем выше будет угол въезда.

Угол съезда – это то же самое, но для задней части кузова: угол между горизонтальной поверхностью и линией, проведенной между пятном контакта задних колес и нижней точкой задней части автомобиля. Иными словами, это максимальный угол рампы, на которую может въехать автомобиль при движении задним ходом, не коснувшись ее задней частью кузова. Он, очевидно, зависит от клиренса и длины заднего свеса: чем больше клиренс и меньше задний свес, тем больше будет угол съезда.

Угол рампы, или продольный угол проходимости – это максимальный угол, который может преодолеть автомобиль, не касаясь поверхности днищем. Он, в свою очередь, зависит от сочетания клиренса и длины колесной базы: чем больше клиренс и короче база, чем больше будет угол рампы. Его изменение, к примеру, можно наглядно увидеть в трехдверной и пятидверной версиях Lada 4X4: углы въезда и съезда у них одинаковы, а вот угол рампы у трехдверки больше, потому что у нее короче колесная база.

SRAAAgLMSuA 960

Угол опрокидывания, или угол поперечной статической устойчивости – это максимальный угол поворота автомобиля вокруг продольной оси, при котором он может не опрокинуться набок. Он зависит от сочетания ширины и высоты автомобиля, ширины его колеи, а также его центра тяжести: чем больше ширина автомобиля и его колеи, меньше высота и ниже центр тяжести, тем выше угол опрокидывания.

pYAAAgHMSuA 960

Кроме этих основных параметров геометрической проходимости есть и еще некоторые, определенно относящиеся к геометрии, но не связанные напрямую с габаритами автомобиля. Это максимальный преодолеваемый уклон, глубина преодолеваемого брода, ходы подвески и артикуляция подвески.

Максимальный преодолеваемый уклон – это предельный угол относительно горизонта той поверхности, по которой способен двигаться автомобиль без посторонней помощи, то есть, предельная крутизна уклона, на который может въехать автомобиль.

Глубина преодолеваемого брода – это максимальная глубина водного препятствия, которое автомобиль может преодолеть без негативных последствий для его технической части. Глубина брода прежде всего ограничена высотой расположения точки забора воздуха двигателем: если вода поднимется до нее, то проникнет во впускной тракт и далее в цилиндры, что может спровоцировать гидроудар и серьезную поломку мотора. У обычных автомобилей точка воздухозабора расположена под капотом, что ограничивает максимальную высоту преодолеваемого брода. Специально подготовленные же внедорожники оснащаются шноркелем – патрубком, выводящим точку забора воздуха на уровень крыши, что позволяет преодолевать более глубокие броды без риска гидроудара.

Ход подвески – это максимальное расстояние, которое может проделать колесо в вертикальном направлении от точки максимального сжатия подвески до момента ее полной разгрузки на грани отрыва от поверхности. Чтобы оценить этот параметр, автомобиль можно загнать одним из передних колес на препятствие такой высоты, чтобы заднее колесо на той же стороне оторвалось от поверхности – это называется диагональное вывешивание, поскольку второе переднее колесо в этом случае тоже будет на грани отрыва от земли. Ну а расстояние по вертикальной оси между высотой подъема переднего и заднего колеса на одной стороне автомобиля в таком положении – это и есть артикуляция подвески. Ходы подвесок колес и артикуляция оказывают косвенное влияние на показатели геометрической проходимости.

Выше мы обозначили и объяснили практически все параметры, характеризующие геометрическую проходимость автомобиля. На практике же, в «бытовом» понимании и беглом сравнении под геометрической проходимостью обычно понимают четыре из них: клиренс, а также углы въезда, съезда и рампы. Для описания возможностей своих кроссоверов и внедорожников автопроизводители используют именно эти цифры – и по большому счету, они вполне исчерпывающе характеризуют эксплуатационные показатели машины.

Однако ключевые слова здесь – «эксплуатационные показатели»: цифры геометрической проходимости – далеко не единственное, что определяет реальную проходимость. На нее в не меньшей степени влияют тип привода (а если привод полный – то тип его технической реализации, наличие межосевой и межколесных блокировок, а также характеристики используемых покрышек. И как показывает практика, именно последние становятся главным ограничением внедорожных способностей современных серийных автомобилей.

.
Главное и неизменное «действующее лицо» всех систем полного привода — это раздаточная коробка: специальный агрегат, который получает крутящий момент от коробки передач и распределяет его на переднюю и заднюю оси. А вот методик распределения, равно как и схем компоновки, есть несколько.

Системы полного привода принято делить на три типа:

Постоянный полный привод (Full-time)
Плюсы:

— надёжная «неубиваемая» конструкция;
— возможность езды с полным приводом как по бездорожью, так и по асфальту.

— сложность по сравнению с жестко подключаемым приводом;
— большая масса;
— сложность настройки управляемости;
— повышенный расход топлива.

Первое, что приходит в голову, когда есть задача передать крутящий момент на две оси, — это жестко подсоединить их к раздатке железными трубами. Но вот незадача: при прохождении поворотов колеса автомобиля проходят разные пути.

Если жестко соединить оси, то какие-то колеса будут ехать, а какие-то — пробуксовывать. В грязи, когда покрытие мягкое, это нестрашно. Во времена Второй мировой, скажем, легендарные «Виллисы» спокойно ездили с жестко соединенными осями, потому как эксплуатировались исключительно на бездорожье. А вот если покрытие твердое, то эти пробуксовки будут порождать крутильные колебания и медленно, но верно разрушать трансмиссию.

Поэтому в раздаточной коробке автомобилей с постоянным полным приводом располагается межосевой дифференциал — механизм, который распределяет мощность между осями и позволяет им вращаться с разной скоростью. И если какое-то колесо замедляется, то обороты другого увеличиваются, но настолько же падает и крутящий момент на нем.

Все это здорово, пока мы едем по асфальту, а что делать, если задней осью мы застряли в луже? На передних колесах, которые будут стоять на твердой поверхности, будет момент но не будет оборотов, зато задние будут вращаться очень быстро, но момент на них будет маленьким. Маленькой будет и мощность на заднем колесе и ровно такую же мощность дифференциал подаст на передок. Буксовать в таком случае можно хоть целую вечность — все равно не сдвинешься.

Для таких случаев дифференциал снабжают блокировкой — когда она включена, обороты на всех колесах одинаковые, а момент зависит только от сцепления колес с дорогой.

За счет наличия дополнительных узлов (дифференциала и блокировки) вся система получается достаточно тяжелой и сложной. Кроме того, постоянная передача момента на все колеса увеличивает потери энергии, а значит, ухудшает динамику и увеличивает расход топлива.

Постоянный полный привод в автомобилестроении до сих пор используется, хотя в последнее время эту систему постепенно вытесняет полный привод по требованию, о котором речь пойдет дальше.

Жестко подключаемый (Part-time)

— надежная механика;
— максимальная простота при высокой проходимости.

— по асфальту с полным приводом ездить не рекомендуется;
— от дифференциала и блокировок можно и отказаться, при условии, что одна из осей будет временно отключаться. По такой логике работает система жестко подключаемого полного привода.

Оси между собой соединяются без дифференциала, и момент распределяется в строгом соотношении. Как следствие, высокая проходимость и минимум затрат.

Парт-тайм на сегодняшний день практически вымер и используется только на сугубо внедорожных автомобилях. Современному водителю пользоваться этой системой неудобно. Подключать ось можно только в неподвижном состоянии, чтобы не повредить механизмы. Ну а если после покатушек в лесу выехать на шоссе и забыть отключить полный привод, то есть риск загубить всю трансмиссию.

Полный привод с муфтой

— дешевизна и простота устройства;
— малая масса;
— возможность тонкой настройки системы.

— слабая надежность и стойкость к перегрузкам;
— нестабильность характеристик.

Жесткая блокировка дифференциала — это неплохо на бездорожье, но как заставить систему полного привода дозировать момент в динамике? Степень пробуксовки ведь всегда разная… Решение было найдено в середине 50-х годов.
Обычный механический дифференциал дополнили вязкостной муфтой (вискомуфтой). Вискомуфта — это деталь, в которой ряды лопаток, связанных с входным и выходным валами, вращаются в специальной жидкости. Входной и выходной валы свободно вращаются относительно друг друга, но секрет муфты именно в наполнителе, который при повышении температуры увеличивает свою вязкость.

При обычном движении, легких поворотах или проскальзывании колес муфта не препятствует взаимному перемещению лопаток, но как только разница в скорости вращения передних и задних колес вырастает, жидкость начинает интенсивно перемешиваться и нагреваться. При этом она становится вязкой и блокирует перемещения лопаток относительно друг друга. Чем больше разница, тем выше вязкость и степень блокировки.

Сегодня муфты используются как на схемах с постоянным полным приводом совместно с механическими дифференциалами, так и самостоятельно. Ведущим валом они соединены с раздаткой, а ведомым — с дополнительной осью. При необходимости, когда одна из осей буксовала, часть момента через муфту уходит на нее.

В поздних конструкциях муфт от жидкости отказались в пользу трущихся дисков, которые работают по такому же принципу, как фрикционное сцепление. При необходимости электроника «поджимает» их и начинает передачу момента. Управлять дозировкой момента автомобиль может самостоятельно, без участия водителя.

При всем удобстве муфты имеют ряд недостатков, основной из которых — слабая выносливость на серьезном бездорожье. Трущиеся диски от нагрузки перегреваются, и муфта уходит в аварийный режим. Поэтому эта система применяется в основном на компромиссных кроссоверах и легковых автомобилях, где полный привод нужен не для преодоления буераков, а для лучшей управляемости.

Обычный механический дифференциал дополнили вязкостной муфтой (вискомуфтой). Вискомуфта — это деталь, в которой ряды лопаток, связанных с входным и выходным валами, вращаются в специальной жидкости. Входной и выходной валы свободно вращаются относительно друг друга, но секрет муфты именно в наполнителе, который при повышении температуры увеличивает свою вязкость.

При обычном движении, легких поворотах или проскальзывании колес муфта не препятствует взаимному перемещению лопаток, но как только разница в скорости вращения передних и задних колес вырастает, жидкость начинает интенсивно перемешиваться и нагреваться. При этом она становится вязкой и блокирует перемещения лопаток относительно друг друга. Чем больше разница, тем выше вязкость и степень блокировки.

Сегодня муфты используются как на схемах с постоянным полным приводом совместно с механическими дифференциалами, так и самостоятельно. Ведущим валом они соединены с раздаткой, а ведомым — с дополнительной осью. При необходимости, когда одна из осей буксовала, часть момента через муфту уходит на нее.

В поздних конструкциях муфт от жидкости отказались в пользу трущихся дисков, которые работают по такому же принципу, как фрикционное сцепление. При необходимости электроника «поджимает» их и начинает передачу момента. Управлять дозировкой момента автомобиль может самостоятельно, без участия водителя.

При всем удобстве муфты имеют ряд недостатков, основной из которых — слабая выносливость на серьезном бездорожье. Трущиеся диски от нагрузки перегреваются, и муфта уходит в аварийный режим. Поэтому эта система применяется в основном на компромиссных кроссоверах и легковых автомобилях, где полный привод нужен не для преодоления буераков, а для лучшей управляемости.

Дальнейшая эволюция систем полного привода, по всей видимости, будет связана с электромоторами. Первый электромобиль с двигателем на каждом колесе показал еще на Всемирной выставке в Париже 1900 года Фердинанд Порше. Тогда это был, как бы сейчас сказали, «нежизнеспособный концепт-кар». Моторы были слишком тяжелые, а конструкция — дорогой. Сейчас у такой схемы перспектив явно больше.

Есть потенциал и у гибридной схемы, где одна ось приводится в движение двигателем внутреннего сгорания, а вторая — элекродвигателем. Впрочем, если говорить о настоящих внедорожниках, то никакие электроинновации и фрикционные муфты пока не заменят дешевой, простой и выносливой механики.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто