Первые признаки неисправности лямбда-зонда или как проверить датчик кислорода
Главная страница » Первые признаки неисправности лямбда-зонда или как проверить датчик кислорода
О том, что такое лямбда зонд и для чего он нужен, к сожалению, знают далеко не все автовладельцы. Лямбда зонд — это кислородный датчик, который позволяет электронной системе контролировать и балансировать правильное соотношение воздуха и бензина в камерах сгорания. Он способен своевременно исправить структуру топливной смеси и предупредить дестабилизацию рабочего процесса двигателя.
Этот достаточно хрупкий прибор находится в очень агрессивной среде, поэтому его работу необходимо постоянно контролировать, так как при его поломке дальнейшее использование автомобиля невозможно. Периодическая проверка лямбда зонда станет гарантом стабильной работы автотранспортного средства.
Принцип действия лямбда зонда
Основной задачей лямбда зонда является определение химсостава выхлопных газов и уровня содержания в них молекул кислорода. Этот показатель должен колебаться в пределах от 0,1 до 0,3 процентов. Бесконтрольное превышение этого нормативного значения может привести к неприятным последствиям.
При стандартной сборке автомобиля, лямбда зонд монтируется в выпускном коллекторе в области соединения патрубков, однако, иногда бывают и другие вариации его установки. В принципе, иное расположение не влияет на рабочую производительность данного прибора.
Сегодня можно встретить несколько вариаций лямбда зонда: с двухканальной компоновкой и широкополосного типа. Первый вид чаще всего встречается на старых автомобилях, выпущенных в 80-е годы, а также на новых моделях эконом-класса. Датчик широкополосного типа присущ современным авто среднего и высшего класса. Такой датчик способен не только с точностью определить отклонение от нормы определенного элемента, но и своевременно сбалансировать правильное соотношение.
Благодаря усердной работе таких датчиков существенно повышается рабочий ресурс автомобиля, снижается топливный расход и повышается стабильность удержания оборотов холостого хода.
С точки зрения электротехнической стороны, стоит отметить тот момент, что датчик кислорода не способен создавать однородный сигнал, так как этому препятствует его расположение в коллекторной зоне, ведь в процессе достижения выхлопными газами прибора может пройти определенное количество рабочих циклов. Таким образом, можно сказать, что лямбда зонд реагирует скорее на дестабилизацию работы двигателя, о чем он собственно впоследствии и оповещает центральный блок и принимает соответствующие меры.
Основные признаки неисправности лямбда зонда
Основным признаком неисправности лямбда зонда служит изменение работы двигателя, так как после его поломки значительно ухудшается качество поступаемой топливной смеси в камеру сгорания. Топливная смесь, по сути, остается бесконтрольной, что недопустимо.
Причиной выхода из рабочего состояния лямбда зонда может быть следующее:
Во всех вышеперечисленных случаях, кроме последнего, выход из строя происходит постепенно. Поэтому те автовладельцы, которые не знают как проверить лямбда зонд и где он вообще расположен, скорее всего, не сразу заметят неисправность. Однако, для опытных водителей определить причину изменения работы двигателя не составит никакого труда.
Постепенный выход из строя лямбда зонда можно разбить на несколько этапов. На начальной стадии датчик перестает нормально функционировать, то есть, в определенных рабочих моментах мотора устройство перестает генерировать сигнал, впоследствии чего дестабилизируется налаженность оборотов холостого хода.
Иными словами, они начинают колебаться в достаточно расширеном диапазоне, что в конечном итоге приводит к потере качества топливной смеси. При этом авто начинает беспричинно дергаться, также можно услышать нехарактерные работе двигателя хлопки и обязательно на панели приборов загорается сигнальная лампочка. Все эти аномальные явления сигнализируют автовладельцу о неправильной работе лямбда зонда.
На втором этапе датчик и вовсе перестает работать на не прогретом двигателе, при этом автомобиль будет всевозможными способами сигнализировать водителю о проблеме. В частности, произойдет ощутимый упадок мощности, замедленное реагирование при воздействии на педаль акселератора и все те же хлопки из-под капота, а также неоправданное дергание автомобиля. Однако, самым существенным и крайне опасным сигналом поломки лямбда зонда служит перегрев двигателя.
В случае полного игнорирования всех предшествующих сигналов свидетельствующих об ухудшении состояния лямбда зонда, его поломка неизбежна, что станет причиной большого количества проблем. В первую очередь пострадает возможность естественного движения, также значительно увеличится расход топлива и появится неприятный резкий запах с ярко выраженным оттенком токсичности из выхлопной трубы. В современных автоматизированных автомобилях в случае поломки кислородного датчика может попросту активизироваться аварийная блокировка, в результате которой последующее движение автомобиля становится невозможным. В таких случаях сможет помочь только экстренный вызов эвакуатора.
Однако, самым худшим вариантом развития событий является разгерметизация датчика, так как в этом случае движение автомобиля становится невозможным по причине высокой вероятности поломки двигателя и последующего дорогостоящего ремонта. Во время разгерметизации отработанные газы вместо выхода через выхлопную трубу, попадают в заборный канал атмосферного эталонного воздуха. Во время торможения двигателем лямбда зонд начинает фиксировать переизбыток молекул кислорода и экстренно подает большое количество отрицательных сигналов, чем полностью выводит из строя систему управления впрыском.
Основным признаком разгерметизации датчика является потеря мощности, особенно это ощущается во время скоростного движения, характерное постукивание из-под капота во время движения, которое сопровождается неприятными рывками и неприятный запах, который выбрасывается из выхлопа. Также о разгерметизации свидетельствует видимый осадок сажных образований на корпусе выпускных клапанов и в области свечей.
Как определить неисправность лямбда зонда рассказывается на видео:
Электронная проверка лямбда зонда
Узнать о состоянии лямбда зонда можно путем его проверки на профессиональном оборудовании. Для этого используется электронный осциллограф. Некоторые специалисты определяют работоспособность кислородного датчика при помощи мультиметра, однако, он способен только констатировать или же опровергнуть факт его поломки.
Проверяется устройство во время полноценной работы двигателя, так как в состоянии покоя датчик не сможет полностью передать картину своей работоспособности. В случае даже незначительного отхождения от нормы, лямбда зонд рекомендуется заменить.
Замена лямбда зонда
В большинстве случаев такая деталь, как лямбда зонд не подлежит ремонту, о чем свидетельствуют утверждения о невозможности произведения ремонта от многих автомобильных производителей. Однако, завышенная стоимость такого узла у официальных дилеров отбивает всякую охоту его приобретения. Оптимальным выходом из сложившейся ситуации может стать универсальный датчик, который стоит гораздо дешевле родного аналога и подходит практически всем автомобильным маркам. Также в качестве альтернативы можно приобрети датчик бывший в использовании, но с продолжительностью гарантийного периода или же полностью выпускной коллектор с установленным в него лямбда зондом.
Однако, бывают случаи, когда лямбда зонд функционирует с определенной погрешностью из-за сильного загрязнения в результате оседания на нем продуктов сгорания. Для того чтобы убедиться, что это действительно так, датчик необходимо проверить у специалистов. После того как проверка лямбда зонда состоялась и подтвержден факт его полной работоспособности, его нужно снять, почистить и установить обратно.
Для того чтобы демонтировать датчик уровня кислорода, необходимо прогреть его поверхность до 50 градусов. После снятия, с него снимается защитный колпачок и только после этого можно приступать к очистке. В качестве высокоэффективного очищающего средства рекомендуется использовать ортофосфорную кислоту, которая с легкостью справляется даже с самыми стойкими горючими отложениями. По окончании процедуры отмачивания, лямбда зонд ополаскивается в чистой воде, тщательно просушивается и устанавливается на место. При этом не стоит забывать о смазке резьбы специальным герметиком, который обеспечить полную герметичность.
Устройство автомобиля очень сложное, поэтому он нуждается в постоянной поддержке работоспособности и проведении своевременных профилактических работ. Поэтому в случае возникновения подозрений о неисправности лямбда зонда, необходимо незамедлительно произвести диагностику его работоспособности и в случае подтверждения факта выхода из строя, заменить лямбда зонд. Таким образом, все важнейшие функции транспортного средства будут сохранены на прежнем уровне, что станет гарантом отсутствия дальнейших проблем с двигателем и прочими важными элементами автомобиля.
Лямбда зонд. Что это такое и как он работает?
В данной статье разберемся что такое лямбда зонд, для чего нужен и принцип его работы.
Жесткие экологические нормы узаконили применение на автомобилях каталитических нейтрализаторов – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – тут приходит на помощь датчик кислорода, он же лямбда зонд.
Что такое лямбда зонд?
Название датчика лямбда зонд происходит от греческой буквы лямбда, которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. По сути, лямбда зонд — это датчик для измерения состава выхлопных газов, чтобы поддерживать оптимальный состав топлива и воздуха.
При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится одна часть топлива — лямбда равна 1. Обеспечить такую точность возможно только с помощью систем питания с электронным впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.
Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива.
На некоторых моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора.
Принцип работы лямбда-зонда
Схема лямбда зонда на основе диоксида циркония, расположенного в выхлопной трубе.
1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба.
Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400°С. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала).
Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В.

Зависимость напряжения лямбда-зонда от коэффициента избытка воздуха при температуре датчика 500-800°С
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент расположен внутри керамического тела датчика и подключается к электросети автомобиля.
Если лямбда зонд не работает
В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в выхлопе, снижение мощности, но машина при этом остается на ходу.
Перечень неисправностей лямбда зонда достаточно большой и некоторые из них самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».
Лямбда зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 000 км в зависимости от условий эксплуатации и исправности двигателя. Особенно чувствителен к качеству топлива – после нескольких таких заправок лямбда зон «умирает» и больше не работает
Зачем нужен «этот» лямбда-зонд? Часть 1
Сейчас у меня на очереди проверка кислородных датчиков т.е лямбда-зондов. поэтому решил углубиться в эту тему… почитать, нашёл интересную статейку может кому будет интересно… Заодно узнаете что это за зверёк и зачем он нужен. как его проверить и чем можно его чистить…
Автолюбитель пошел нынче грамотный – даже владельцев стареньких «Жигулей» не удивишь заморскими словечками ABS, ESP, Jetronic, катализатор, инжектор, лямбда-зонд… Последний термин, правда, больше волнует владельцев иномарок. Случается, в автомобиле вдруг «тяга» упала, он стал есть бензин: как не в себя, опять оштрафовали за СО, а причина всего этого неизвестна. На СТО мастера скажут: «Лямбда сдохла», предложат ее заменить, но цены! А не поможет, тогда что? Среди знакомых никто толком не знает, как к «лямбде» подступиться: «вещь в себе»… Действительно, лямбда-зонд – штука загадочная, но все же давайте попробуем в этой загадке разобраться.
Лямбда-датчик зондирует выхлоп
Зачем нужен лямбда-зонд
Жесткие экологические нормы давно узаконили применение на автомобилях каталитических нейтрализаторов (в обиходе – катализаторы) – устройств, способствующих снижению содержания вредных веществ в выхлопных газах. Катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси обеспечить катализаторам «долголетие» невозможно – вот тут и приходит на помощь датчик кислорода, он же О2-датчик, он же лямбда-зонд (ЛЗ).
Название датчика происходит от греческой буквы l (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, l равна 1 (график 1).
График 1. Зависимость мощности двигателя (P) и расхода топлива (Q) от коэффициента избытка воздуха (l)
Полное сгорание и максимальная мощность достигается при l=1.
«Окно» эффективной работы катализатора очень узкое: l=1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда.
Избыток воздуха в смеси измеряется весьма оригинальным способом – путем определения в выхлопных газах содержания остаточного кислорода (О2). Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси и контролируется эффективность работы катализатора (рис. 1).
Рис. 1. Схема l-коррекции с одним и двумя датчиками кислорода двигателя
1 – впускной коллектор; 2 – двигатель; 3 – блок управления двигателем; 4 – топливная форсунка; 5 – основной лямбда-зонд; 6 – дополнительный лямбда-зонд; 7 – каталитический нейтрализатор.
Принцип работы
Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония (ZrO2). Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы (рис.2).
Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения.
При пуске и прогреве холодного двигателя управление впрыском топлива осуществляется без участия этого датчика, а коррекция состава топливо-воздушной смеси осуществляется по сигналам других датчиков (положения дроссельной заслонки, температуры охлаждающей жидкости, числа оборотов коленвала и др.). Особенностью циркониевого лямбда-зонда является то, что при малых отклонениях состава смеси от идеального (0,97 Ј l Ј 1,03) напряжение на его выходе изменяется скачком в интервале 0,1 — 0,9 В (график 2).
Кроме циркониевых, существуют кислородные датчики на основе двуокиси титана (TiO2). При изменении содержания кислорода (О2) в отработавших газах они изменяют свое объемное сопротивление. Генерировать ЭДС титановые датчики не могут; они конструктивно сложны и дороже циркониевых, поэтому, несмотря на применение в некоторых автомобилях (Nissan, BMW, Jaguar), широкого распространения не получили.
Для повышения чувствительности лямбда-зондов при пониженных температурах и после запуска холодного двигателя используют принудительный подогрев. Нагревательный элемент (НЭ) расположен внутри керамического тела датчика и подключается к электросети автомобиля (рис. 3).
Рис. 3. Конструкция датчика кислорода с подогревателем
1 – керамическое основание; 2, 8 – контакты НЭ; 3 – нагревательный элемент (НЭ); 4 – твердый электролит ZrO2 с напыленными платиновыми электродами; 5 – защитный кожух с прорезями; 6 – металлический корпус с резьбой крепления; 7 – уплотнительное кольцо; 9 – выводы датчика.
Если ЛЗ «врет»
В этом случае ЭБУ начинает работать по усредненным параметрам, записанным в его памяти: при этом состав образующейся топливно-воздушной смеси будет отличаться от идеального. В результате появится повышенный расход топлива, неустойчивая работа двигателя на холостом ходу, увеличение содержания СО в отработавших газах, снижение динамических характеристик, но машина при этом остается на ходу. В некоторых моделях автомобилей ЭБУ реагирует на отказ лямбда-зонда очень серьезно и начинает так рьяно увеличивать количество подаваемого в цилиндры топлива, что запас горючего в баке «тает» на глазах, из трубы валит черный дым, СО «зашкаливает», а двигатель «тупеет» и на ближайшую СТО вам, скорее всего, придется добираться на буксире.
Перечень возможных неисправностей лямбда-зонда достаточно большой и некоторые из них (потеря чувствительности, уменьшение быстродействия) самодиагностикой автомобиля не фиксируются. Поэтому окончательное решение о замене датчика можно принять только после его тщательной проверки, которую лучше всего поручить специалистам. Следует особо отметить, что попытки замены неисправного лямбда-зонда имитатором ни к чему не приведут – ЭБУ не распознает «чужие» сигналы, и не использует их для коррекции состава приготавливаемой горючей смеси, т.е. попросту «игнорирует».
При сгоревшем или отключенном лямбда-зонде содержание СО в выхлопе возрастает на порядок: от 0,1 – 0,3% до 3 – 7% и уменьшить его значение не всегда удается, т. к. запаса хода винта качества смеси может не хватить. В автомобилях, система l-коррекции которых имеет два кислородных датчика, дело обстоит еще сложнее. В случае отказа второго лямбда-зонда (или «пробивки» секции катализатора) добиться нормальной работы двигателя практически невозможно.
Вообще лямбда-зонд – наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет 40 – 80 тыс. км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец «отравляет» платиновые электроды лямбда-зонда за несколько бесконтрольных заправок.
Рис. 4. Контактные выводы наиболее распространенных циркониевых лямбда-зондов
а – без подогревателя; б, с – с подогревателем.
* цвет вывода может отличаться от указанного.
Махнем не глядя!
Рекомендованный заводом-изготовителем лямбда-зонд и сходные по конструкции циркониевые датчики взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в машине цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты.
Цветовая маркировка выводов лямбда-зондов может различаться, но сигнальный провод всегда будет иметь темный цвет (обычно – черный). «Массовый» провод может быть белым, серым или желтым (рис. 4). Титановые лямбда-зонды от циркониевых легко отличить по цвету «накального» вывода подогревателя – он всегда красный. При замене 3-контактного лямбда-зонда на 4-контактный необходимо надежно соединить с «массой» автомобиля провод заземления подогревателя и сигнальный «минус», а накальный провод подогревателя через реле и предохранитель подключить к «плюсу» аккумулятора.
Подключение напрямую к катушке зажигания нежелательно, т. к. в цепи ее питания может стоять понижающее сопротивление. Подключиться к контактам топливного насоса достаточно сложно. Лучше всего подключить реле подогревателя лямбда-зонда к замку зажигания.
Лямбда-зонд, описание, диагностика, проблемы.
Многие задаются вопросом зачем он вообще нужен, и зачастую наслушавшись безграмотных советов доморощенных *чиптюнеров* стремятся его разными способами удалить из системы. Не буду долго лить всякую теоретическую воду напишу кратко:
-для владельца авто он позволяет экономить бензин как гласит запись из каталога бош (см. рис.) при исправном двигателе, системе управления ну и собственно лямбда зонде (далее ЛЗ) это реальная экономия до 15% топлива, нетрудно посчитать это 1,5 л на 10 л!
-для экологии, ну этот пункт мы пропускаем, ввиду низкой экологической культуры на территории стран бывшего СНГ.
-для нас диагностов, его показания очень важны, так как дают очень много полезной информации о состоянии системы и двигателя в целом, что повышает качество наших выводов.
Описание
Датчики кислорода (см. Рис. 1) сегодня востребованы благодаря постоянно растущим жестким требованиям по токсичности выхлопных газов, и идут рука об руку с каталитическими конвертерами. Один датчик кислорода установлен в выпускном коллекторе непосредственно перед катализатором. Иногда второй датчик устанавливается в выхлопной системе после каталитического конвертера для того, чтобы обеспечить его максимальную эффективность.
Получаемая с датчиков информация, показывает, насколько полно происходит сгорание топлива в камерах двигателя внутреннего сгорания. Оптимальные показания получаются, когда соотношение воздуха к топливу составляет 14.7 : 1. Стехиометрическое соотношение воздух/топливо — это когда на 1 килограмм бензина приходится 14.7 килограмм воздуха, теоретически необходимого для полного сгорания. Фактор избыточного количества воздуха (λ-«лямбда») показывает отношение действительного количества воздуха (в смеси воздух+топливо) к теоретически необходимому. То есть λ = (действительная масса воздуха)/(теоретическая потребность в воздухе).
пояснение к рисунку, заводские сток машины все настраиваются под лямбда =1
спортсмены настраивают под лямбда 0,8-0,9
экономисты всех мастей под лямбда 1,05-1,10
те *чиптюнеры* которые вам пообещают что ваша машина будет валить как болид F1, и в тоже время будет экономной, вас обманывают, так как законы физики и химии никто не отменял!
Рисунок 3. Датчик кислорода в выхлопной трубе
1. Керамическое покрытие
2. Электроды
3. Контакты
4. контакты корпуса
5. Выхлопная труба
6. Керамическая поддерживающая оболочка (пористая)
7. Отработавшие газы
8. Наружный воздух.
Датчик кислорода представляет собой гальваническую ячейку (ячейку Нернста) с твёрдым электролитом. В качестве электролита используется газонепроницаемая керамика из диоксида циркония (ZrO2), стабилизированного оксидом иттрия (YO). C одной стороны (снаружи) он сообщается с выхлопными газами, а с другой (изнутри) — с атмосферой. На внешнюю и внутреннюю сторону керамики нанесены газопроницаемые электроды из тонкого слоя платины.
Платиновый электрод на наружной стороне работает как миниатюрный катализатор, поддерживающий в прилегающем слое поступающих выхлопных газов химические реакции, этот слой в состояние стехиометрического равновесия. Сторона чувствительной керамики, обращенная к отработавшим газам, во избежание ее загрязнения покрыта слоем пористой шпинелевой керамики (Шпинель — минералогическое название тетраоксида диалюминия-магния). Металлическая трубка со щелями предохраняет керамику от ударов и чрезмерных тепловых воздействий. Внутренняя полость сообщается с атмосферой и служит в качестве референсной (опорной) стороны датчика.
Работа датчика основана на принципе ячейки Нернста (гальванической ячейки). Керамический материал пропускает ионы кислорода при температурах от 350oC и выше. Разница в количестве кислорода с разных сторон чувствительной зоны датчика приводит к образованию электрического потенциала (напряжения) между этими двумя поверхностями (внутренней и внешней). Величина напряжения служит показателем того, на сколько количество кислорода на этих двух поверхностях различается. А количество остаточного кислорода в выхлопных газах точно соответствует пропорции между топливом и воздухом, поступающими в двигатель.
Широкополосный λ-датчик кислорода
Этот датчик также использует принцип ячейки Нернста, но устроен по-другому. Его конструкция подразумевает наличие двух камер (ячеек): измерительной и так называемой «насосной» (см. Рис. 7). Через маленькое отверстие в стенке насосной ячейки выхлопные газы попадают в измерительную камеру (диффузионную щель) в ячейке Нернста.
Таким образом, если обычные датчики используют напряжение на ячейке Нернста для прямого измерения и определения одного из двух состояний (λ>1 или λ
Но расстояние от выпускных клапанов газораспределительного механизма двигателя до места расположения датчика и значительное время реакции чувствительного элемента датчика приводят к некоторой инерционности системы, что не позволяет непрерывно поддерживать стехиометрический состав топливо-воздушной смеси. Практически, при работе двигателя на установившемся режиме, состав смеси постоянно отклоняется от стехиометрического в диапазоне ±2…3% с частотой 1…2раза в секунду. Этот процесс чётко прослеживается по осциллограмме напряжения выходного сигнала лямбда-зонда.
осциллограмма напряжения выходного сигнала исправного лямбда-зонда BOSCH.
Двигатель работает на холостом ходу. Частота переключения сигнала составляет
Проверка выходного сигнала датчика Измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно сигнальной «массы» датчика. Сигнальная «масса» двух- и четырёх-проводных лямбда-зондов BOSCH выведена через отдельный провод (провод серого цвета идущий от датчика) на разъём датчика. Сигнальная «масса» одно- и трёх-проводных лямбда-зондов BOSCH соединена с металлическим корпусом датчика и при установке датчика автоматически соединяться с «массой» автомобиля через резьбовое крепление датчика. Выведенная через отдельный провод на разъём датчика сигнальная «масса» лямбда-зонда в большинстве случаев так же соединена с «массой» автомобиля. Встречаются блоки управления двигателем, где провод сигнальной «массы» лямбда-зонда подключен не к «массе» автомобиля, а к источнику опорного напряжения. В таких системах, измерение напряжения выходного сигнала лямбда-зонда блок управления двигателем производит относительно источника опорного напряжения, к которому подключен провод сигнальной «массы» лямбда-зонда. Для просмотра осциллограммы напряжения выходного сигнала лямбда-зонда, разъём осциллографического щупа должен быть подключен к любому из аналоговых входов осциллографа, чёрный зажим типа «крокодил» осциллографического щупа должен быть подсоединён к «массе» двигателя диагностируемого автомобиля, пробник щупа должен быть подсоединён параллельно сигнальному выводу датчика (провод чёрного цвета идущий от датчика).
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH.
Двигатель работает на холостом ходу. Частота переключения сигнала занижена и составляет
0,6Hz. Снижение частоты переключения выходного сигнала лямбда-зонда может быть вызвана возросшим временем перехода выходного напряжения зонда от одного уровня к другому из-за старения или химического отравления датчика. Неисправность может привести к раскачке частоты вращения двигателя на режиме холостого хода и к потере «приёмистости» двигателя. Ресурс датчика содержания кислорода в отработавших газах составляет 20 000…80 000 km. Из-за старения, выходное электрическое сопротивление лямбда-зонда снижается при значительно более высокой температуре чувствительного элемента до значения, при котором датчик приобретает способность отклонять опорное напряжение. Из-за возросшего выходного электрического сопротивления, размах выходного напряжения сигнала лямбда-зонда уменьшается. Стареющий лямбда-зонд легко можно выявить по осциллограмме напряжения его выходного сигнала на таких режимах работы двигателя, когда поток и температура отработавших газов снижаются. Это режим холостого хода и малых нагрузок. Практически, стареющий лямбда-зонд всё ещё работает на движущемся автомобиле, но как только нагрузка на двигатель снижается (холостой ход), размах сигнала быстро начинает уменьшаться вплоть до пропадания колебаний.
Осциллограмма напряжения выходного сигнала неисправного лямбда-зонда BOSCH. Двигатель работает на холостом ходу. Переключения выходного сигнала отсутствуют. Напряжение выходного сигнала стареющего лямбда-зонда при работе двигателя на холостом ходу становится почти стабильным, его значение становится близким опорному напряжению 300…600mV.
Уровень содержания кислорода в камере с атмосферным воздухом при этом оказывается значительно выше уровня содержания кислорода в выхлопных газах, вследствие чего зонд генерирует напряжение 1V положительной полярности. В случае разгерметизации лямбда-зонда, в камеру с атмосферным воздухом проникают отработавшие газы с низким содержанием кислорода. На режиме торможения двигателем (закрытая дроссельная заслонка при вращении двигателя с высокой частотой, подача топлива при этом отключена), в выхлопную систему двигателем выбрасывается почти чистый атмосферный воздух. В таком случае, уровень содержания кислорода в выхлопной системе резко возрастает и уровень содержания кислорода в атмосферной камере зонда оказывается значительно ниже уровня содержания кислорода в отработавших газах, вследствие чего зонд генерирует напряжение 1V отрицательной полярности. Блок управления двигателем в таком случае считает лямбда-зонд исправным, так как вскоре после пуска двигателя и прогрева, датчик отклонил опорное напряжение и снизил его до
Выходное напряжение зонда напряжением
0V свидетельствует о близком уровне содержания кислорода в отработавших газах и в разгерметизированой атмосферной камере зонда. На блок управления двигателем поступает сигнал зонда низкого уровня, что является для него свидетельством обеднённой топливовоздушной смеси. Вследствие этого, блок управления двигателем обогащает топливовоздушную смесь. Таким образом, разгерметизация лямбда-зонда приводит к значительному обогащению топливовоздушной смеси. При этом многие системы самодиагностики выявить данную неисправность зонда не способны.
Широкополосный лямбда-зонд Выходной сигнал широкополосного лямбда-зонда в отличие от двухуровневых зондов несёт сведения не только о направлении отклонения состава рабочей смеси от стехиометрического, но и о его численном значении. Анализируя уровень выходного сигнала широкополосного лямбда-зонда, блок управления двигателем рассчитывает численное значение коэффициента отклонения состава рабочей смеси от стехиометрического состава, что, по сути, является коэффициентом лямбда.
Для широкополосных зондов производства BOSCH Выходное напряжение чувствительного элемента зонда (чёрный провод относительно жёлтого провода) изменяется в зависимости от уровня содержания кислорода в отработавших газах и от величины и полярности электрического тока, протекающего по кислородному насосу зонда (красный провод относительно жёлтого). Блок управления двигателем генерирует и подаёт на кислородный насос зонда электрический ток, величина и полярность которого обеспечивает поддержание выходного напряжения чувствительного элемента зонда на заданном уровне (450 mV). Если бы двигатель работал на топливовоздушной смеси стехиометрического состава, то блок управления двигателем установил бы на красном проводе напряжение равное напряжению на жёлтом проводе, и ток протекающий через красный провод и кислородный насос зонда был бы равен нулю.
При работе двигателя на обеднённой смеси, блок управления двигателем на красный провод подаёт положительное напряжение относительно жёлтого провода, и через кислородный насос начинает течь ток положительной полярности. При работе двигателя на обогащенной смеси, блок управления изменяет полярность напряжения на красном проводе относительно жёлтого провода, и направление тока кислородного насоса так же изменяется на отрицательное. Величина тока кислородного насоса устанавливаемая блоком управления двигателем зависит от величины отклонения состава топливовоздушной смеси от стехиометрического состава. В электрическую цепь кислородного насоса включен измерительный резистор, падение напряжения на котором и является мерой уровня содержания кислорода в отработавших газах.
Проблемы
Проблема заключается в следующем, цена на новый ЛЗ сейчас очень высока. На рынках в магазинах сейчас очень часто попадаются бракованные, поддельные ЛЗ, в случае установки его в выпуск, обратно вернуть его уже весьма проблематично.
Из того что испытывалось, нагрев строительным феном ЛЗ до 350 С с подачей опорного напряжения 0,45 в никакой реакции (способ найден в инете!) на ламповом оссцилоскопе с высоким входным сопротивлением.
Но порадовало одно у чуствительного элемента ЛЗ есть емкость где то в районе 50-80 Пикофарад.
Другой более надежный способ рожденный опытом это берем газовый паяльник и нагреваем чуствительный элемент при этом разьем лямды подключен к эбу и смотрим на отклонение напряжения от опорного, в небольших пределах мы увидим отклонение что косвенно потверждает его исправность.
Меня интересуют варианты безустановочной диагностики ЛЗ. Буду рад любым идеям, даже самым бредовым на первый взгляд.