Как называлась первая механическая счетная машина

Первое в мире счетное устройство — машина Шиккарда

В 1957 году директор Кеплеровского научного центра Франц Гаммер выступил с докладом на семинаре по истории математики, проходившем в Германии. Он сделал сенсационное известие о том, что проект первой счетной машины появился на несколько десятилетий до знаменитых «колесиков» Паскаля. Первое счетное устройство было изобретено еще в середине 1623 года и называлось машиной Шиккарда.

ea05995503354e08b50cbe42918e05e8

Открытие этого факта Гаммер сделал почти случайно. Когда он работал в штутгардской библиотеке, то наткнулся на загадочную фотокопию эскиза какого-то счетного устройства. И поскольку раньше ничего подобного не видел, очень заинтересовался неизвестным наброском. Проведя ряд исследований Гаммер установил, что найденный эскиз — это отсутствующее приложение к письму профессора Тюбингенского университета Вильгельма Шиккарда, адресованное его коллеге математику Иоганну Кеплеру. В своем письме Шиккард подробно описывал счетную машину и ссылался на чертеж.

image loader

Вильгельм Шиккард родился 22 апреля 1592 года в городе Херренберг (Германия). Он был чрезвычайно талантлив и уже в 17 лет получил в Тюбингенском университете степень магистра, а через два года стал бакалавром наук. Он приобрел всемирную известность благодаря своим достижениям в науках: астрономии, математике и востоковедстве (профессор кафедры восточных языков в университете Тюбингена). А также, Шиккард создал первую вычислительную машину.

54ca96c8a661418ab35c9d7179d5ab30

Вильгельм Шиккард (1592-1635)

С 1617 года Шиккард начал преподавать восточные языки в Тюбингенском университете. Там он и познакомился с Кеплером, который по достоинству оценил незаурядные способности молодого ученого и порекомендовал ему заняться математикой. Шиккард послушался совета и на новом поприще достиг значительных успеха. В 1631 году он стал профессором математики и астрономии Тюбингенского университета.

Шиккард был первопроходцем и в других сферах. Как например — в астрономии. Ученый постоянно развивался, вел переписку со многими немецкими, французскими, итальянскими и голландскими учеными по вопросам, касающимся астрономии. Он создал первый механический планетарий, который наглядно демонстрировал положение Солнца, Земли и Луны согласно системе Коперника. Кроме этого, наблюдал метеоры из разных пунктов для определения их траектории.

6f73e4167a4745b8b08d1cf423b02044

Широта интересов Шиккарда действительно заслуживает уважения. Он был опытным механиком, картографом, гравером по дереву и металлу, проводил астрономические наблюдения, писал трактаты о семитских языках, астрономии, математике, оптике и метеорологии. Ученый добился выдающихся научных успехов и был по истине гениальным изобретателем. Но оказался бессильным перед эпидемией холеры. Эта беспощадная болезнь XVII века в 1635 году забрала жизнь Шиккарда и его семьи. Труды ученого на время были забыты из-за Тридцатилетней войны.

Машина Шиккарда — начало XVII века

В одном из писем Кеплеру (от 20 сентября 1623 года) сообщалось, что Шиккард осуществил механически все то, что Кеплер делал алгебраически, а именно — сконструировал машину, которая автоматически выполняла сложение, вычитание, умножение и деление. Шиккард писал, что Кеплер приятно удивился, если бы увидел как устройство само накапливает и переносит влево десяток или сотню цифр и как отнимает то, что держала в памяти при вычитании.

752ada52c35d47fb952c70ef8595bc01

Изобретение, которое стало первой счетной машиной, было создано в 1623 году. Шиккард изобрел и разработал модель шестиразрядного механического вычислительного устройства, выполняющего простые математические функции, такие как — складывать и вычитать числа. Не даром его называли «часами для счета». Машина Шиккарда содержала суммирующее и множительное устройства, а также механизм для записи промежуточных результатов.

… ааа — это верхние торцы вертикальных цилиндров, на их боковых поверхностях нанесены таблицы умножения; при необходимости цифры этих таблиц могут наблюдаться в окнах bbb скользящих планок. К дискам ddd крепятся изнутри машины колеса с десятью зубьями, каждое из которых находится в таком зацеплении с себе подобным, что если любое правое колесо повернется десять раз, то находящееся слева от него колесо сделает один поворот, или если первое из упомянутых колес сделает 100 оборотов, третье слева колесо повернется один раз. Для того чтобы зубчатые колеса вращались в одном и том же направлении, необходимо иметь промежуточные колеса…

129e2650a9db4423a67827ea2bc53f32

Иоганн Кеплер (1571-1630)

Более подробное описание помогает составить представление об изобретении. Первый блок в виде шестиразрядной суммирующей машины представлял собой соединение зубчатых передач. На каждой оси располагалось по шестерне с десятью зубцами и вспомогательным однозубым колесом — пальцем. Палец служил для того, чтобы передавать единицу в следующий разряд, то есть поворачивать шестеренку на десятую часть полного оборота, после того как шестеренка предыдущего разряда сделает такой оборот. При вычитании шестеренки требовалось вращать в обратную сторону. Контролировать ход вычислений можно было с помощью специальных окошек, где появлялись цифры. Для перемножения использовалось устройство, главную часть которой составляли шесть осей с «навернутыми» на них таблицами умножения. Вычитание выполнялось вращением установочных колес в обратном направлении, так как механизм передачи десятков был реверсивным.

image loader

На самом деле в работе машина Шиккарда была довольно простой. К примеру, чтобы узнать чему равно произведение 296 х 73, нужно установить цилиндр в положении, которое позволит вывести в верхнем ряду окошек первый множитель: 000296. Произведение 296 х 3 получится, если открыть окошки третьего ряда и просуммировать увиденные цифры, как в способе решетки. Далее точно также открываются окошки седьмого ряда, дающие произведение 296 х 7 к которому слава приписывается 0. И останется лишь сложить найденные числа на суммирующем устройстве. Все, результат готов.

Нерешенным остается вопрос — была ли собрана реально действующая модель машины при жизни ученого? На этот счет данных очень мало. В письмах Шиккарда все к тому же Кеплеру идет речь о «практически готовом» экземпляре устройства, который сгорел во время пожара. Он находился в разработке у механика Вильгельма Пфистера. Была ли собрана вторая модель машины — доподлинно неизвестно. Скорее всего, никто кроме Шиккарда и Пфистера не видели готовое и действующее устройство. Во всяком случае свидетельств работоспособности не сохранилось.

9289f95846b24542a8028944de480ea9

Но что точно — долгое время машина Шиккарда оставалась известной лишь узкому кругу доверенных лиц. И данное изобретение не смогло оказать влияние на последующее развитие механизации счета. Кто знает, может быть с помощью этого проекта прогресс вычислительных устройств мог бы ускориться. Но так или иначе, имя немецкого ученого Вильгельма Шиккарда находится в одном ряду с великими умами, изобретателями счетных устройств XVII—XIX столетий. Такими, как Блез Паскаль, Готфрид Вильгельм Лейбниц, Чарльз Бэббидж, Пафнутий Львович Чебышев, Герман Холлерит и другими.

6d2aca9d390b438295efd7574af229d1

современный прообраз машины Шиккарда

Основываясь на материалах, найденных Гаммером, сотрудники Тюбингенского университета в начале 1960-х годов создали действующую модель машины Шиккарда. Операции сложения и вычитания осуществлялись в ней механически, а умножения и деления — с элементами механизации. Прообраз изобретения находится в собственности университета.

Эволюция в области вычислительных технологий — процесс довольно неравномерный, который происходит скачками от периодов спада до периодов падения. Достигнутые результаты используются на практике и каждый новый шаг выводит процесс вычислительной эволюции на новую, более высокую ступень.

Источник

Развитие счётных машин
с древних времён
до наших дней

Можно подумать, будто счётная машина — это современное явление. Однако человечество стало изобретать устройства для счёта задолго до того, как появились первые компьютеры.

Самыми первыми человеческими помощниками в счёте были пальцы. С их помощью наши далёкие предки указывали друг другу, сколько охотников нужно, чтобы окружить и загнать зверя. Добыча тоже требовала счёта — нужно было определить, сколько мяса получат члены племени. Так что скоро пяти пальцев стало не хватать. Поэтому древние люди начали считать с помощью камешков и костей, раскладывая их на песке в неверном свете костра.

Однако со временем количество палочек росло, и скоро понадобились обозначения для десятков и сотен. Счёт был нужен, чтобы высчитывать срок появления на свет детей, вести учёт отёла скота и знать, когда взойдут посевы, чтобы предсказывать солнечные и лунные затмения. Также исследователи уверены, что важной вехой в развитии счёта стала торговля. Как объяснить, что пять шкур равны десяти корзинам мяса? Или тридцати мешкам овощей? Появилась необходимость в универсальных обозначениях, а человеческое мышление совершило восхождение к абстракции, обратившись к идее чисел как таковых.

Какие же инструменты помогали человечеству?

Древние люди делали зарубки на костях и камнях и носили эти палочки с собой, либо оставляли чёрточки на стенах жилищ. Одно из самых старинных устройств, которое не так уж далеко ушло от костей на полу пещеры — это, конечно, счёты. По сути они представляют собой те же кости (деревяшки, камушки), только нанизанные на спицы, которые закреплялись в раме.

Их близкий родственник — счётная доска абак, которая появилась в Вавилоне около пяти тысяч лет назад. Очевидно, что её появлению мы обязаны бурной вавилонской торговле. Если классические счёты, какими их знают в России, опираются на позиционную десятичную систему счисления, то вавилонский абак использовал шестидесятеричную. Такой оригинальный способ счёта происходит, как и большинство систем счисления, от пропорций человеческого тела — если говорить точнее, от числа фаланг пальцев на одной руке (не считая большого).

Вариации счётных досок были во всех древних культурах. В Японии они называются соробан, в Китае — суньпань. Римляне делали счёты из металла, передвигая костяшки в пазах металлической доски, а ацтеки — из кукурузных зёрен. Инки использовали для подсчёта зёрен «многоэтажное» устройство под названием юпана.

Самые первые помощники человечества в счете

1230 b75854533d

Кость с зарубками, обнаруженная в Дольни-Вестонице. Её возраст — почти 30 000 лет.

1

Древнеримский абак. Реконструкция

Osumi Soroban 1949 1

Японские дети собирают соробаны на заводе. 1949 г.

Однако люди всегда стремились упростить себе жизнь, создавая всё более сложные устройства, которые бы взяли необходимость считать на себя. С ростом городов и развитием промышленности потребность в них только увеличилась. В XVII столетии появились логарифмические таблицы и линейки. Шотландский математик Джон Непер изобрёл счётный прибор, известный как палочки Непера. Снискав на время большую популярность, палочки Непера, однако, вскоре были заброшены. А вот арифмометр оказался перспективнее. Изобретённый ещё в античности, в эпоху Просвещения он был переоткрыт и получил заслуженное признание. Ранее схему похожего на арифмометр механизма изображал Леонардо да Винчи, который, как обычно, опередил своё время: тогда его идея успеха не имела.

napierbonesdetailt20

Как развивались счётные машины?

В общем виде счётная машина представляет собой устройство, работающее на зубчатых колёсах и цилиндрах, которое производит четыре основных математических действия. Записывающие счётные машины также могут автоматически фиксировать результаты на ленте. Принцип счёта основан на поразрядном сложении и сдвиге суммы частных произведений. Свои версии арифмометра создали Блез Паскаль, спроектировавший в 1646 году суммирующую машину «паскалина», и Готфрид Вильгельм Лейбниц: в его арифмометре была ручка, вращение которой ускоряло повторяющиеся операции.

Также следует упомянуть вычислительную машину, разработанную Чарльзом Бэббиджем в XIX столетии. Она могла производить вычисления с точностью до двадцатого знака, подходила для операций с логарифмами и тригонометрическими функциями. Программа для неё была составлена Адой Лавлейс, первой женщиной-программистом, да и вообще первым программистом в мире. Именно ей принадлежат термины «цикл» и «рабочая ячейка».

Арифмометр Блеза Паскаля. 1642 г.

Leibniz Stepped Reck

Арифмометр Лейбница. 1673 г.

172531004964FE438

Элемент аналитической машины Чарльза Бэббиджа. 1910 г.

Существовало множество моделей счётных машин. Например, карманный арифмометр Curta, выпущенный в 1948 году, был размером с человеческий кулак.

В конце XIX века изобретатель Уильям Берроуз запатентовал свой арифмометр и основал компанию по производству компьютерной техники Burroughs Corporation. Его сын продолжил дело, а вот внук, тоже Уильям Берроуз, интересовался литературой куда больше, чем вычислительными машинами, и стал одной из значимых фигур поколения битников.

Арифмометры выпускали марки Facit и Mercedes (не тот, что выпускает автомобили: производитель офисной техники судился с автоконцерном за название, договорившись в результате о том, что у каждой компании своя сфера деятельности). А в СССР самым популярным арифмометром был названный в честь Дзержинского «Феликс», который выпускался заводом «Счётмаш» до 1978 года.

Обладая характерной для механических устройств красотой, арифмометры всё-таки имели существенные недостатки. Порядок действий всегда задавался вручную, поэтому результат счёта сильно зависел от внимательности оператора, которому требовалось нажимать на клавишу для выполнения каждого действия. Арифмометры имели хождение вплоть до второй половины ХХ века, когда их окончательно вытеснили электронные счётные устройства.

Лихтенштейнский карманный арифмометр Curta. 1948 г.

07 kam ar 1

Советский арифмометр «Феликс»

140204williamburroug

Уильям Берроуз, который любил печатные машинки гораздо больше, чем счётные. 1959 г., Париж. Loomis Dean—Time & Life Pictures/Getty Images

Электронный прорыв

Настоящий прорыв в развитии вычислительной техники случился в 60-х годах ХХ века.

В 1957 году японская компания Casio выпустила первый полностью электронный калькулятор 14-А. Событие было эпохальным, потому что открыло новую эру в мире счёта, но жизнь офисных работников и инженеров эта модель не изменила, ведь весил калькулятор целых 140 кг.

Первым компактным, а значит, массовым, калькулятором стал Anita, выпущенный английской компанией Bell в 1961 году. Он работал на газоразрядных лампах и был оснащён клавишами ввода числа и множителя. С тех пор функции калькуляторов становились всё более серьёзными, а сами калькуляторы — всё более лёгкими и умными.

Например, в 1965 году появился первый настольный электронный калькулятор со встроенной памятью Casio 001. Весил он всего 17 килограмм, что по тем временам для машины, способной запоминать операции, было вовсе не много, а два года спустя появился первый настольный программируемый калькулятор Casio AL-1000.

Однако пользователям калькуляторов было и этого мало, ведь счётное устройство куда удобнее держать в руке и носить с собой. Так появились калькуляторы Sharp и Canon, которые весили менее килограмма.

«Электроника»

Вот ещё несколько эпохальных инноваций от японской марки Casio, которые существенно изменили представления о том, на что способны калькуляторы.

Появился карманный калькулятор Casio Mini, продажи которого побили все рекорды. А через некоторое время компания выпустила миниатюрную версию, Casio Mini Card, размером с кредитную карту.

Компания выпустила калькулятор FX-7000G — первый в мире программируемый графический калькулятор, доступный широкой публике, с матричным дисплеем, имеющем разрешение 96×64 пикселя. Эта модель может отображать как встроенные графики, так и построенные пользователем. В дополнение к режиму графического отображения калькулятор имеет функцию программирования на языке Бейсик.

Пять лет спустя на прилавках появился калькулятор Casio CFX-9800G, в котором впервые появилась возможность делать графики в разных цветах. По сути, был добавлен цветной дисплей. В отличие от современных экранов, он был трёхцветным и работал на отражённом свете. Это дало возможность рисовать каждый график своим цветом, что делало графические отображения функций куда более наглядными.

Casio выпускает устройство CASIO ClassPad 300 — первый калькулятор с большим сенсорным экраном. Модель имела систему компьютерной алгебры (CAS), которая позволяет производить преобразования выражений в аналитической (символьной) форме.

появился калькулятор Casio FX-82ES с технологией Natural Display, позволяющий вводить выражения в естественном виде так, как они выглядят на бумаге. Например, вводить обыкновенные дроби, квадратные корни, экспоненты и логарифмы в виде, принятом в учебниках. В результате сокращается количество ошибок в вычислениях, время вычислений и повышается заинтересованность учеников.

Модель калькулятора Casio fx-CG20 PRIZM явилась развитием первой модели, выпущенной в 2010 году. В отличие от предшественников она имела полноцветный экран высокого разрешения. Модель, несмотря на экран с подсветкой, не потеряла в энергоэффективности и способна месяцами работать на одном комплекте батарей.

Сейчас калькуляторы не только стали компактными и лёгкими, но и освоили массу функций, которые могут быть полезны всем, кому требуются точные и сложные расчёты. Сейчас существуют научные калькуляторы, которым под силу производить вычисления с дробями, считать векторы и матрицы, совершать метрические преобразования и решать уравнения, графические калькуляторы, позволяющие создавать таблицы и строить графики по картинке, а также финансовые калькуляторы, которые справляются с расчётом облигаций и другими нуждами финансиста.

На сегодняшний день флагманская графическая модель — калькулятор Casio FX-CG50 с цветным экраном высокого разрешения, возможностью строить 3D графики, режимом программирования, а также поддержкой векторных и матричных вычислений.

Casio 001. 1965 г.

CasioMini1332IMG 526

Casio Mini. 1972 г.

Casio fx7000G PowerO

Дисплей калькулятора Casio fX-7000G. 1985 г.

fxcg501

Casio FX-CG50

Так счётное устройство прошло эволюцию от доски с костяшками до маленького мощного компьютера, сохранив, тем не менее, главное свойство — способность облегчать жизнь человеку, освобождая его разум для стратегических решений.

Источник

Счетная суммирующая машина Блеза Паскаля – это изобретение, удивившее современников, но так и не нашедшее свой круг клиентов. Механизм, в основе имеющий зубчатые колесики, считается одним из прародителей калькулятора.

paskalina

«Паскалина»: история возникновения

Создание одной из самых ранних моделей суммирующих машин принадлежит французскому физику и математику Блезу Паскалю. Отец Паскаля был сборщиком налогов, поэтому уже в 19 лет будущий ученый видел, как производятся разные счетные операции. Уже в этот период создаются первые чертежи «Паскалины». Всего на окончательную разработку аппарата ушло 5 лет.

В теории механизм Паскаля был достаточно прост в применении, но из-за слабого развития технической стороны осуществление плана ученого стало сложной задачей, для которой пришлось преодолеть множество трудностей.

Блез хотел, чтобы его суммирующая машина упростила произведение любых сложных расчетов, как человеку образованному, так и тому, кто мало что понимал в арифметике. Паскаль затронул важную проблему, касающуюся не только его семьи, а и развития науки ХVII века.

На протяжении 10 лет исследователь создал более 50 счетных машин, однако лишь малую долю своих изобретений он смог продать. Один из первых готовых аппаратов Паскаль отдал канцлеру Сергье как благодарность за его помощь в научной деятельности молодого Блеза.

Что такое счетная машина Блеза Паскаля?

Использование оборотов колеса для процесса сложения не был новшеством в научной деятельности Паскаля, так как эту идею озвучил еще в 1623 году Вильгельм Шиккард. А действительно изобретением Блеза считается перенос остатка в следующий разряд при полном вращении шестеренки.

В первых «паскалинах» было по пять зубчатых колесиков, а уже с дальнейшей модернизацией технологии в механизме их число доходило до восьми штук, что позволяло работать с большими числами (до 9999999).

Этот механизм активно использовался в разных технических приборах до ХХ века. Его преимуществом было умение автоматического складывания многозначных чисел самим прибором.

Исследователи истории возникновения счетных механизмов считают, что Паскаль создал свою суммирующую машину практически с нуля, так как не был ознакомлен с проектом Шиккарда.

Прибор удивил современную науку, однако из-за высокой стоимости и сложности в эксплуатации так и не смог обрести свою аудиторию. Все же изобретение Паскаля внесло огромный вклад в историю развития вычислительной техники.

Источник

userinfo v8muzejsveta

Братский Музей Света

КАЖДУЮ ЛАМПОЧКУ СВЕТ УБИВАЕТ!

5 февраля 1850 года в США запатентована первая счётная машина-арифмометр

Счётные инструменты прошлого из Братского Музея Света.

Самую первую машину для арифметических вычислений изобрел Б. Паскалем еще в 1641 году. Однако она была несовершенна. Так что немецкий часовой мастер Ганн доработал ее в 1790 году. Теперь арифмометр выполнял все 4 арифметические действия. Ученый назвал свое изобретение «паскалиной».

Первый массовый коммерческий калькулятор — «арифмометр» — построил в 1820 г. француз Шарль Ксавьер Том де Кольмар. Его «машинка», занимавшая весь письменный стол, могла умножать числа, а с помощью пользователя и производить деление. Это был самый надежный калькулятор из всех, построенных до него.

В 1821 году француз Карл Томас организовал серийное производство арифмометров. Принцип работы был основан на применении ступенчатого валика Лейбница. Томас-машина могла исполнять четыре основных арифметических действия. Появление арифмометра Томаса подтолкнуло исследователей к созданию еще более совершенных и быстродействующих машин.

Петербургским ученым В.Т. Однером был создан и организован массовый выпуск арифмометров, которые распространились по всему миру. Несколько десятков лет это была самая распространенная вычислительная машина. Однер заменил ступенчатые валики Лейбница зубчатым колесом с меняющимся числом зубцов. Колесо Однера состоит из подвижного диска, который прилегает к неподвижному диску. На неподвижном диске закреплены выдвигающиеся зубья. Ступенька на подвижном, вращающемся диске выдвигает зубец, соответствующий заданной цифре. Выдвинутые зубцы входят в зацепление с промежуточным колесом, которое вращает шестерню колеса счетчика результата.

Настольная механическая вычислительная машина с ручным приводом для выполнения сложения, вычитания, умножения и деления.

Источник

От счетных палочек к арифмометру

Вначале люди учились считать, используя собственные пальцы. Затем в ход пошли мелкие предметы — камешки, ракушки, палочки и т.п. Когда же этого оказалось недостаточно, возникли простейшие счетные приспособления. Особое место среди них занял старинный вычислительный инструмент, получивший название «абак» от латинского слова «abacus» — «доска».

75

Считается, что впервые абак появился в Месопотамии около 3500 лет до н.э. Сделать его было совсем несложно — достаточно было разлинеить столбцами дощечку или просто нарисовать столбцы на песке. Каждому из столбцов присваивалось значение разряда чисел: единиц, десятков, сотен, тысяч. Числа обозначались набором камешков, раскладываемых по различным столбцам — разрядам. Добавляя или убирая из соответствующих столбцов то или иное количество камешков, можно было производить не только сложение или вычитание, но даже умножение и деление, многократно повторяя операцию сложения или вычитания соответственно.

Китайский суаньпань

В Древнем Китае для счета применяли инструмент, построенный по принципу абака — суаньпань. Он появился примерно в VI в. н.э. и представлял собой прямоугольную деревянную раму, в которой параллельно друг другу были протянуты проволоки или веревки. Они соответствовали десятичным разрядам. Обычно их число равнялось девяти, но для подсчета больших величин их могло быть и больше. По длине рамка суаньпань была разделена на две неравные части. В большом отделении, обозначавшем землю, на каждой проволоке было нанизано по пять шариков (косточек), в меньшем («небо») — по два.

76

Более совершенный соробан

Ориентировочно в XVI в. суаньпань из Китая попал в Японию. Здесь его несколько переделали и дали другое название — соробан. Японские счеты представляли собой прямоугольную раму, которая могла содержать несколько десятков вертикальных палочек. И чем больше их было, тем с большим числом разрядов цифр можно было проводить математические операции. На каждой палочке находилось по пять косточек, разделенных поперечной полосой — над полосой одна косточка, под полосой — четыре. Некоторые японцы настолько виртуозно владели соробаном, что по скорости счета могли поспорить даже с калькулятором.

77

Простой счетный прибор

По принципу действия очень похожи на абак традиционные русские счеты. Только роль столбцов в них выполняют горизонтальные направляющие из проволоки с нанизанными на них косточками. На Руси счеты были незаменимым инструментом торговцев, приказчиков, чиновников. Даже в конце прошлого века их активно использовали в магазинах для счета вместо калькулятора. А из России этот простой и полезный счетный прибор проник и в Европу.

78

Инструмент для сложных вычислений

К немеханическим счетным устройствам также относится логарифмическая линейка — инструмент для быстрого выполнения таких сложных математических операций, как умножение и деление, возведение в степень (чаще всего в квадрат и куб), вычисление логарифмов и тригонометрических функций. Считается, что первая логарифмическая линейка была изготовлена англичанином Робертом Биссакером (1620—?) в 1654 г. Она состояла из линейки с нанесенной на ней логарифмической шкалой и подвижного бегунка. Вычисления производились путем перемещения движка вдоль линейки, при этом результат отображался на ее шкале.

79

Современная логарифмическая линейка состоит из двух шкал в логарифмическом масштабе, способных передвигаться относительно друг друга. Более сложные ее варианты могут содержать дополнительные шкалы и прозрачный бегунок с несколькими рисками.

Простота арабских цифр

Мы привыкли к тому, что цифры 1,2, 3 и т.д., которыми мы пользуемся ежедневно, называются арабскими и придумали их арабы. На самом деле эти цифра возникли в Индии примерно в IV—V вв. Просто арабы принесли оттуда эту форму записи чисел, которая потом распространилась через Северную Африку, Испанию и в X в. попала в Европу.

Преимущество арабских цифр по сравнению с римскими не в их написании, а в гениальном изобретении, при котором «вес» цифры определяется ее положением. Так, например, 3 в числе 23 «весит» всего три единицы, а уже в числе 232 — три десятка единиц. Представьте, какие бы сложные вычисления нам пришлось производить, если бы до сих пор пользовались римскими числами. Чтобы понять это, попробуйте, например, перемножить XVII на СХХIII (17 на 123).

Считающие часы

Первый механический калькулятор, умевший выполнять различные арифметические действия, был построен немецким ученым Вильгельмом Шикардом (1592—1633) в 1623 г. Изобретатель назвал свою машину «Считающими часами». Вероятно, такое название она получила из-за того, что, как и в настоящих часах, работа ее механизма была основана на использовании звездочек и шестеренок.

80

«Считающие часы» Шикарда умели складывать и вычитать шестизначные числа и информировали пользователя о переполнении с помощью звонка. По некоторым данным, с помощью этого изобретения друг Шикарда, известный немецкий философ и астроном Иоганн Кеплер (1571—1630), рассчитывал сложнейшие астрономические таблицы.

К сожалению, сама машина и ее чертежи были потеряны в годы Второй мировой войны. Однако в 1960 г. группа энтузиастов построила точную копию этого вычислителя по обнаруженным древним записям и подтвердила его существование и работоспособность.

Счетная машина Паскаля

Более совершенное механическое счетное устройство удалось построить в 1642 г. выдающемуся французскому ученому Блезу Паскалю (1623—1662). Механический «компьютер», названный ученым «Паскалина», мог складывать и вычитать любые числа до одного миллиона.

81

Машина Паскаля представляла собой механическое устройство в виде деревянного ящика с многочисленными связанными одна с другой шестеренками и набором вертикально установленных колес с нанесенными на них цифрами от 0 до 9. Складываемые числа вводились в машину при помощи соответствующего поворота наборных колесиков. При полном обороте колесо сцеплялось с соседним и поворачивало его на одно деление. Ответ появлялся в верхней части металлического корпуса.

Примерно за 10 лет Паскаль построил около 50 экземпляров своей машины. Сложность и высокая стоимость «Паскалины» в сочетании с небольшими вычислительными способностями послужили препятствием ее широкому распространению. Но зато заложенный в основу машины Паскаля принцип связанных колес в дальнейшем использовался в большинстве создаваемых вычислительных устройств.

82

Устройство для умножения и деления

В 1673 г. немецкий математик и философ Готфрид Вильгельм Лейбниц (1646—1716) создал механическое счетное устройство, которое не только складывало и вычитало, но умножало и делило 12-разрядные числа. В основе механизма лежал изобретенный Лейбницем ступенчатый валик, представлявший собой цилиндр с нанесенными на нем зубцами различной длины. Ускорить повторяющиеся операции сложения позволяла специальная рукоятка, с помощью которой пользователь вращал цилиндр.

83

По некоторым данным один экземпляр счетной машины Лейбница был приобретен Петром I, который затем подарил его китайскому императору, желая удивить последнего европейскими техническими достижениями. Кстати, именно зубчатые колеса Лейбница в дальнейшем стали основой массовых счетных приборов — арифмометров, которыми широко пользовались вплоть до середины XX в.

84

Коммерческий успех и долгая жизнь

Производство счетных машин длительное время оставалось делом невыгодным. Лишь в 1820 г. французскому предпринимателю Шарлю-Ксавье Тома де Колмару (1785—1870) удалось создать первый механический счетный прибор, принесший своему изобретателю коммерческий успех.

85

В своей машине Колмар использовал принцип построения счетного механизма Лейбница, что позволяло быстро производить основные математические операции. Получив патент на свою машину, изобретатель запустил ее в массовое производство. Достаточно быстро она завоевала звание самой надежной счетной машины и не случайно занимала достойное место на столах счетоводов Европы. Кроме того, этот вычислитель поставил своеобразный мировой рекорд по продолжительности продаж: последняя модель была продана в начале XX в.

Прообраз компьютера

В середине XIX в. английский математик Чарльз Бэббидж (1792—1871) разработал «аналитическую машину», которая по своей конструкции напоминала современный компьютер. Она могла оперировать с 40-разрядными числами, а ее вычислительное устройство (процессор) имело два блока для хранения промежуточных результатов. Кроме того, в машину был встроен своеобразный банк данных (память), в котором могли храниться несколько десятков чисел. Информация (данные) и порядок выполнения операций (программа) в «аналитическую машину» Бэббиджа вводились с перфокарт, а результаты выводились на печатающее устройство (принтер).

86

По свидетельству очевидцев, такая машина складывала числа за 3 секунды, а операции умножения и деления занимали до 4 минут.

Популярность арифмометра

В первой половине XX в. большим спросом у работников, занимавшихся расчетами, пользовались настольные механические счетные устройства, действующие на основе сложения. Они назывались «арифмометры» — от греческого слова «число» — и выполняли операции сложения, вычитания, умножения и деления. Механизм арифмометра приводился в действие рычагом. Так, например, для сложения надо было выставить на рычажках первое слагаемое. Затем повернуть ручку арифмометра, при этом число на рычажках вводилось в счетчик суммирования. После этого на рычажках устанавливалось второе слагаемое, и ручка вновь поворачивалась. При этом число на рычажках прибавлялось к числу, находящемуся в счетчике суммирования, и на счетчике появлялся результат сложения.

87

В течение многих десятков лет арифмометр был самой распространенной вычислительной машиной. И только появление компактных электронных калькуляторов вытеснило его из всеобщего употребления.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто