Радиопомехи от коллекторных машин и способы их подавления
При неудовлетворительной коммутации коллекторная машина становится источником радиопомех, ухудшающих качество радиоприема, а иногда делающих его невозможным, поэтому уровень индустриальных радиопомех не должен превышать значений, определяемых действующими нормами.
Рис. 27.14. Схема включения помехозащитного фильтра
Радиопомехи распространяются двумя путями: по эфиру (электромагнитное излучение) и через электросеть. Для подавления помех, распространяемых по эфиру, электрические машины экранируют. В качестве экрана используют заземленный корпус машины. Если со стороны коллектора в машине имеются окна, то их следует закрыть металлическим колпаком или сеткой, обеспечив им надежный контакт с корпусом машины.
Для подавления помех, проникающих от машины в сеть, применяют симметрирование обмоток и включение фильтров. Симметрирование обмоток состоит в том, что каждую обмотку, включенную последовательно в цепь якоря, разделяют на две равные части и присоединяют симметрично к щеткам разной полярности. Применение фильтров — основной способ подавления радиопомех. Для большинства машин достаточно установить емкостный фильтр в виде конденсаторов, включаемых между каждым токонесущим проводом и корпусом машины (рис. 24.14). Значение емкости конденсаторов подбирают опытным путем, при этом они должны быть рассчитаны на рабочее напряжение машины. Для фильтров предпочтительны проходные конденсаторы типа КБП, у которых одним из зажимов является металлическая оболочка, прикрепляемая непосредственно к корпусу машины.
Какие причины могут вызвать искрение на коллекторе?
Какие степени искрения предусмотрены ГОСТом? Дайте каждой из них характеристику и укажите условия допустимости.
Почему прямолинейная коммутация не сопровождается искрением?
Какие причины, вызывающие искрение, возникают при замедленной коммутации?
Объясните назначение и устройство добавочных полюсов.
Каковы причины, способные вызвать круговой огонь по коллектору?
Как можно снизить уровень радиопомех в коллекторной машине?
Радиопомехи от коллекторных машин и способы их подавления
При неудовлетворительной коммутации коллекторная машина становится источником радиопомех, ухудшающих качество радиоприема, а иногда делающих его невозможным, поэтому уровень индустриальных радиопомех не должен превышать значений, определяемых действующими нормами.
Радиопомехи распространяются двумя путями: по эфиру (электромагнитное излучение) и через электросеть. Для подавления помех, распространяемых по эфиру, электрические машины экранируют. В качестве экрана используют заземленный корпус машины. Если со стороны коллектора в машине имеются окна, то их следует закрыть металлическим колпаком или сеткой, обеспечив им надежный контакт с корпусом машины.
Для подавления помех, проникающих от машины в сеть, применяют симметрирование обмоток и включение фильтров.
Симметрирование обмоток состоит в том, что каждую обмотку, включенную последовательно в цепь якоря, разделяют на две равные части и присоединяют симметрично к щеткам разной полярности.
Рис.27.14. Схема включения помехозащитного фильтра
Контрольные вопросы
1. В чем сущность явления реакции якоря машины постоянного тока?
2. Почему МДС якоря, действующая по поперечной оси, вызывает размагничивание машины по продольной оси?
3. Как учитывается размагничивающее действие реакции якоря при расчете числа витков полюсной катушки обмотки возбуждения?
4. С какой целью компенсационную обмотку включают последовательно с обмоткой якоря?
5. Почему с увеличением воздушного зазора ослабляется размагничивающее влияние реакции якоря?
6. Какие способы возбуждения применяют в машинах постоянного тока?
7. Какие причины могут вызвать искрение на коллекторе?
8. Какие степени искрения предусмотрены ГОСТом? Дайте каждой из них характеристику и укажите условия допустимости.
9. Почему прямолинейная коммутация не сопровождается искрением?
10. Какие причины, вызывающие искрение, возникают при замедленной коммутации?
11. Объясните назначение и устройство добавочных полюсов.
12. Каковы причины, способные вызвать круговой огонь по коллектору?
13. Как можно снизить уровень радиопомех в коллекторной машине?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Радиопомехи от коллекторных машин и способы их подавления
При неудовлетворительной коммутации коллекторная машина становится источником радиопомех, ухудшающих качество радиоприема, а иногда делающих его невозможным, поэтому уровень индустриальных радиопомех не должен превышать значений, определяемых действующими нормами.
Радиопомехи распространяются двумя путями: по эфиру (электромагнитное излучение) и через электросеть. Для подавления помех, распространяемых по эфиру, электрические машины экранируют. В качестве экрана используют заземленный корпус машины. Если со стороны коллектора в машине имеются окна, то их следует закрыть металлическим колпаком или сеткой, обеспечив им надежный контакт с корпусом машины.
Рис. 27.14. Схема включения помехозащитного фильтра
Для подавления помех, проникающих от машины в сеть, применяют симметрирование обмоток и включение фильтров. Симметрирование обмоток состоит в том, что каждую обмотку, включенную последовательно в цепь якоря, разделяют на две равные части и присоединяют симметрично к щеткам разной полярности.
Применение фильтров — основной способ подавления радиопомех. Для большинства машин достаточно установить емкостный фильтр в виде конденсаторов, включаемых между каждым токонесущим проводом и корпусом машины (рис. 24.14). Значение емкости конденсаторов подбирают опытным путем, при этом они должны быть рассчитаны на рабочее напряжение машины. Для фильтров предпочтительны проходные конденсаторы типа КБП, у которых одним из зажимов является металлическая оболочка, прикрепляемая непосредственно к корпусу машины.
МДК.01.02 Электрооборудование промышленных и гражданских зданий
35. Состояние и перспективы развития электрооборудования, силовой преобразовательной техники в современном производстве.
Современное состояние и перспектива развития полупроводниковых приборов для электрооборудования промышленности.
Полупроводниковые приборы силовой электроники – важнейшая элементная база энергосберегающего преобразовательного оборудования. Они выполняют функции мощных электронных управляемых ключей для коммутации тока в схемах преобразования электрической энергии (выпрямление, инвертирование, регулирование переменного и постоянного токов, стабилизация питающих сетей, защита от перенапряжений и т.п.).
Силовые полупроводниковые приборы (СПП) способны преобразовывать мощности в непрерывном режиме от 0,5 кВт до 100 МВт на частотах от 50 Гц до 100 кГц, в импульсных режимах – до 100 ГВт. Эти уникальные свойства приборов обусловили их широкое применение в силовой электронике.Развитие полупроводниковых приборов в России зависит от состояния отечественного рынка преобразовательной техники, а также от мировых тенденций развития электронной компонентной базы. По-прежнему востребованы стандартные биполярные приборы: диоды, тиристоры (SCR), динисторы, триаки и др. Они и сегодня составляют основу отечественного преобразовательного оборудования, применяемого в электроэнергетике, транспорте, машиностроении, металлургии, нефте- и газодобыче, стройиндустрии, на крупных коммунальных объектах, в военной технике и пр.Вместе с тем, за последние годы на базе полностью управляемых ключей, прежде всего IGBT (Isolated Gate Bipolar Transistor) и IGCT (Integrated Gate-Commutated Thyristor), созданы современные преобразователи, обеспечивающие преобразование электроэнергии на высоких частотах при минимальных потерях и материальных затратах. Рынок этих приборов, в первую очередь IGBT-модулей, сегодня наиболее динамичен. Он активно расширяется как за счет новых областей применения (автомобильная электроника, ветроэнергетика, инверторы для солнечных батарей, очистка воды, медицинская техника, радиолокация и др.), так и за счет сфер, в которых раньше традиционно использовались мощные тиристоры, – передача электроэнергии (HVDC), компенсаторы реактивной мощности (SVC), электроприводы (IDCD), источники питания (UPS) и др. Причем IGCT уже сегодня достигли предельных коммутируемых мощностей (6000 А/8000 В), характерных для SCR, а IGBT приближаются к ним (3600 А/6500 В).
36. Основные понятия и определения светотехники. Светотехнические единицы измерения световых величин.
Радиопомехи от коллекторных машин и способы их подавления
При неудовлетворительной коммутации коллекторная машина становится источником радиопомех, ухудшающих качество радиоприема, а иногда делающих его невозможным, поэтому уровень индустриальных радиопомех не должен превышать значений, определяемых действующими нормами.
Радиопомехи распространяются двумя путями: по эфиру (электромагнитное излучение) и через электросеть. Для подавления помех, распространяемых по эфиру, электрические машины экранируют. В качестве экрана используют заземленный корпус машины. Если со стороны коллектора в машине имеются окна, то их следует закрыть металлическим колпаком или сеткой, обеспечив им надежный контакт с корпусом машины.
Рис. 27.14. Схема включения помехозащитного фильтра
Для подавления помех, проникающих от машины в сеть, применяют симметрирование обмоток и включение фильтров. Симметрирование обмоток состоит в том, что каждую обмотку, включенную последовательно в цепь якоря, разделяют на две равные части и присоединяют симметрично к щеткам разной полярности.
Применение фильтров — основной способ подавления радиопомех. Для большинства машин достаточно установить емкостный фильтр в виде конденсаторов, включаемых между каждым токонесущим проводом и корпусом машины (рис. 24.14). Значение емкости конденсаторов подбирают опытным путем, при этом они должны быть рассчитаны на рабочее напряжение машины. Для фильтров предпочтительны проходные конденсаторы типа КБП, у которых одним из зажимов является металлическая оболочка, прикрепляемая непосредственно к корпусу машины.
Контрольные вопросы
1.Какие причины могут вызвать искрение на коллекторе?
2.Какие степени искрения предусмотрены ГОСТом? Дайте каждой из них характеристику и укажите условия допустимости.
3.Почему прямолинейная коммутация не сопровождается искрением?
4.Какие причины, вызывающие искрение, возникают при замедленной коммутации?
5.Объясните назначение и устройство добавочных полюсов.
6.Каковы причины, способные вызвать круговой огонь по коллектору?
7.Как можно снизить уровень радиопомех в коллекторной машине?
Глава 28
Коллекторные генераторы постоянного тока
Основные понятия
В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС [см. (25.20)]. При подключении к генератору нагрузки в цепи якоря возникает ток, а на выводах генератора устанавливается напряжение, определяемое уравнением напряжений для цепи якоря генератора:
. (28.1)
(28.2)
— сумма сопротивлений всех участков цепи якоря: обмотки якоря , обмотки добавочных полюсов , компенсационной обмотки , последовательной обмотки возбуждения и переходного щеточного контакта .
При отсутствии в машине каких-либо из указанных обмоток в (28.2) не входят соответствующие слагаемые.
Якорь генератора приводится во вращение приводным двигателем, который создает на валу генератора вращающий момент . Если генератор работает в режиме х.х. , то для вращения его якоря нужен сравнительно небольшой момент холостого хода . Этот момент обусловлен тормозными моментами, возникающими в генераторе при его работе в режиме х.х.: моментами от сил трения и вихревых токов в якоре.
При работе нагруженного генератора в проводах обмотки якоря появляется ток, который, взаимодействуя с магнитным полем возбуждения, создает на якоре электромагнитный момент М [см. (25.24)]. В генераторе этот момент направлен встречно вращающему моменту приводного двигателя ПД (рис. 28.1), т. е. он является нагрузочным (тормозящим).
Рис. 28.1. Моменты, действующие в генераторе постоянного тока
При неизменной частоте вращения вращающий момент приводного двигателя уравновешивается суммой противодействующих моментов: моментом х.х. и электромагнитным моментом М, т. е.
. (28.3)
Выражение (28.3) — уравнение моментов для генератора при . Умножив члены уравнения (28.3) на угловую скорость вращения якоря , получим уравнение мощностей:
, (28.4)
где — подводимая от приводного двигателя к генератору мощность (механическая); —мощность х.х., т. е. мощность, подводимая к генератору в режиме х.х. (при отключенной нагрузке); — электромагнитная мощность генератора.
Согласно (25.27), получим
,
, (28.5)
где — полезная мощность генератора (электрическая), т. е. мощность, отдаваемая генератором нагрузке; — мощность потерь на нагрев обмоток и щеточного контакта в цепи якоря (см. § 29.8).
Учитывая потери на возбуждение генератора ,получим уравнение мощностей для генератора постоянного тока:
. (28.6)
Следовательно, механическая мощность, развиваемая приводным двигателем , преобразуется в генераторе в полезную электрическую мощность , передаваемую нагрузке, и мощность, затрачиваемую на покрытие потерь .
Так как генераторы обычно работают при неизменной частоте вращения, то их характеристики рассматривают при условии . Рассмотрим основные характеристики генераторов постоянного тока.
Характеристика холостого хода — зависимость напряжения на выходе генератора в режиме х.х. от тока возбуждения :
при и .
Нагрузочная характеристика — зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбуждения :
при и .
Внешняя характеристика — зависимость напряжения на выходе генератора U от тока нагрузки :
при и ,
где — регулировочное сопротивление в цепи обмотки возбуждения.
Регулировочная характеристика — зависимость тока возбуждения от тока нагрузки при неизменном напряжении на выходе генератора:
при и .
Вид перечисленных характеристик определяет рабочие свойства генераторов постоянного тока.
Радиопомехи от коллекторных машин и способы их подавления
При неудовлетворительной коммутации коллекторная машина становится источником радиопомех, ухудшающих качество радиоприема, а иногда делающих его невозможным, поэтому уровень индустриальных радиопомех не должен превышать значений, определяемых действующими нормами.
Радиопомехи распространяются двумя путями: по эфиру (электромагнитное излучение) и через электросеть. Для подавления помех, распространяемых по эфиру, электрические машины экранируют. В качестве экрана используют заземленный корпус машины. Если со стороны коллектора в машине имеются окна, то их следует закрыть металлическим колпаком или сеткой, обеспечив им надежный контакт с корпусом машины.
Рис. 27.14. Схема включения помехозащитного фильтра
Для подавления помех, проникающих от машины в сеть, применяют симметрирование обмоток и включение фильтров. Симметрирование обмоток состоит в том, что каждую обмотку, включенную последовательно в цепь якоря, разделяют на две равные части и присоединяют симметрично к щеткам разной полярности.
Применение фильтров — основной способ подавления радиопомех. Для большинства машин достаточно установить емкостный фильтр в виде конденсаторов, включаемых между каждым токонесущим проводом и корпусом машины (рис. 24.14). Значение емкости конденсаторов подбирают опытным путем, при этом они должны быть рассчитаны на рабочее напряжение машины. Для фильтров предпочтительны проходные конденсаторы типа КБП, у которых одним из зажимов является металлическая оболочка, прикрепляемая непосредственно к корпусу машины.
Контрольные вопросы
1.Какие причины могут вызвать искрение на коллекторе?
2.Какие степени искрения предусмотрены ГОСТом? Дайте каждой из них характеристику и укажите условия допустимости.
3.Почему прямолинейная коммутация не сопровождается искрением?
4.Какие причины, вызывающие искрение, возникают при замедленной коммутации?
5.Объясните назначение и устройство добавочных полюсов.
6.Каковы причины, способные вызвать круговой огонь по коллектору?
7.Как можно снизить уровень радиопомех в коллекторной машине?
Глава 28
Коллекторные генераторы постоянного тока
Основные понятия
В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС [см. (25.20)]. При подключении к генератору нагрузки в цепи якоря возникает ток, а на выводах генератора устанавливается напряжение, определяемое уравнением напряжений для цепи якоря генератора:
. (28.1)
(28.2)
— сумма сопротивлений всех участков цепи якоря: обмотки якоря , обмотки добавочных полюсов , компенсационной обмотки , последовательной обмотки возбуждения и переходного щеточного контакта .
При отсутствии в машине каких-либо из указанных обмоток в (28.2) не входят соответствующие слагаемые.
Якорь генератора приводится во вращение приводным двигателем, который создает на валу генератора вращающий момент . Если генератор работает в режиме х.х. , то для вращения его якоря нужен сравнительно небольшой момент холостого хода . Этот момент обусловлен тормозными моментами, возникающими в генераторе при его работе в режиме х.х.: моментами от сил трения и вихревых токов в якоре.
При работе нагруженного генератора в проводах обмотки якоря появляется ток, который, взаимодействуя с магнитным полем возбуждения, создает на якоре электромагнитный момент М [см. (25.24)]. В генераторе этот момент направлен встречно вращающему моменту приводного двигателя ПД (рис. 28.1), т. е. он является нагрузочным (тормозящим).
Рис. 28.1. Моменты, действующие в генераторе постоянного тока
При неизменной частоте вращения вращающий момент приводного двигателя уравновешивается суммой противодействующих моментов: моментом х.х. и электромагнитным моментом М, т. е.
. (28.3)
Выражение (28.3) — уравнение моментов для генератора при . Умножив члены уравнения (28.3) на угловую скорость вращения якоря , получим уравнение мощностей:
, (28.4)
где — подводимая от приводного двигателя к генератору мощность (механическая); —мощность х.х., т. е. мощность, подводимая к генератору в режиме х.х. (при отключенной нагрузке); — электромагнитная мощность генератора.
Согласно (25.27), получим
,
, (28.5)
где — полезная мощность генератора (электрическая), т. е. мощность, отдаваемая генератором нагрузке; — мощность потерь на нагрев обмоток и щеточного контакта в цепи якоря (см. § 29.8).
Учитывая потери на возбуждение генератора ,получим уравнение мощностей для генератора постоянного тока:
. (28.6)
Следовательно, механическая мощность, развиваемая приво дным двигателем , преобразуется в генераторе в полезную электрическую мощность , передаваемую нагрузке, и мощ ность, затрачиваемую на покрытие потерь .
Так как генераторы обычно работают при неизменной частоте вращения, то их характеристики рассматривают при условии . Рассмотрим основные характеристики генераторов постоянного тока.
Характеристика холостого хода — зависимость напряжения на выходе генератора в режиме х.х. от тока возбуждения :
при и .
Нагрузочная характеристика — зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбуждения :
при и .
Внешняя характеристика — зависимость напряжения на выходе генератора U от тока нагрузки :
при и ,
где — регулировочное сопротивление в цепи обмотки возбуждения.
Регулировочная характеристика — зависимость тока возбуждения от тока нагрузки при неизменном напряжении на выходе генератора:
при и .
Вид перечисленных характеристик определяет рабочие свойства генераторов постоянного тока.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.