Изобретатель счетно перфорационной машины

Изобретатель счетно перфорационной машины

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины. В них, так же как и в Аналитической машине Бэббиджа, использовались перфокарты, но только не для представления программы, а для хранения числовой информации. Каждая такая машина могла выполнять только одну определенную программу, манипулируя с перфокартами и числами, пробитыми на них. Счетно-перфорационные машины осуществляли перфорацию, сортировку, суммирование, вывод на печать числовых таблиц. На этих машинах удавалось решать многие типовые задачи статистической обработки, бухгалтерского учета и другие.

Г. Холлерит основал фирму по выпуску счетно-перфорационных машин, которая затем была преобразована в фирму IВМ — ныне самого известного в мире производителя компьютеров.

Непосредственными предшественниками ЭВМ были релейные вычислительные машины. К 30-м годам XX века получила большое развитие релейная автоматика.

В процессе работы релейной машины происходят переключения тысяч реле из одного состояния в другое.

Informatika 9 267

Релейная машина «Марк-2», изготовленная в 1947 году, содержала около 13 000 реле. Одной из наиболее совершенных релейных машин была машина советского конструктора Н. И. Бессонова — РВМ-1. Она была построена в 1956 году и проработала почти 10 лет, конкурируя с существовавшими уже в то время ЭВМ. Поскольку реле — это механическое устройство, то его инерционность (задержка при переключении) достаточно велика, что сильно ограничивало скорость работы таких машин. Скорость РВМ-1 составляла 50 сложений или 20 умножений в секунду. Практически это был предел скорости для машин этого типа.

В первой половине XX века бурно развивалась радиотехника. Основным элементом радиоприемников и радиопередатчиков в то время были электронно-вакуумные лампы. Электронные лампы стали технической основой для первых электронно-вычислительных машин (ЭВМ).

Источник

Ответы на вопросы к семинару Радьковой М., 9 «Б»

Ответы на вопросы к семинару Радьковой М., 9 «Б»

1. Счетно-перфорационные машины (когда и кем созданы, какие задачи на них решались)

Счетно-перфорационные машины были созданы в конце 19 в. Германом Холлеритом (амер.). Они осуществляли перфорацию, сортировку суммирование, вывод на печать числовых таблиц и использовались для решения задач статистической обработки, бухгалтерского учета и др.

2. Релейные вычислительные машины (когда и кем созданы, какие задачи на них решались, быстродействие)

РВМ создавались в начале 20 века. Первой считается Марк-1. Марк-2, изготовленный в 1947, содержал 13000 реле. Однако реле – механическое устройство, и его инверсионность (задержка при переключении) достаточно велика, и это сильно ограничивало скорость работы машин(максимально – 50 «+» или 20 «*» в сек.

Первая ЭВМ – универсальная машина на электронных лампах была построена в 1945 в США и называлась ENIAC (электронный цифровой интегратор и вычислитель). Ее конструировали Джон Моучли и Джон Эккерт. Скорость счета ЭВМ превосходила таковую РВМ того времени в тыс. раз. Первый электронный компьютер ENIAC программировался с пом. штекерно-коммуникационного способа, т.е. программа строилась путем соединения проводниками отд. блоков машины на коммутационной доске, и эта утомительная процедура подготовки машины к работе делала ее неудобной в эксплуатации.

4. Какова роль Джона фон Неймана в создании ЭВМ?

Нейман является создателем принципа архитектуры ЭВМ или принцип хранимой в памяти программы, по которому данные и программа помещаются в общую память машины. Впервые статья была опубликована в 1946 в “Nature”, и идеи этой статьи и назвали «архитектурой ЭВМ Неймана». В 1949 построили первую ЭВМ с архитектурой Неймана – англ. машина EDSAC, второй была амер. EDVAC. Серийное произв-во началось в развитых странах мира в 50-х гг.

5. Первые отечественные ЭВМ (когда, конструктор)

6. Поколения ЭВМ (элементная база (на осн.чего: ламповые, транзисторные и тд), основные характеристики, область применения).

1 поколение ЭВМ – ламповые машины 1950-х. Скорость счета самых быстрых из них – до 20 тыс операций в сек (М-20), внутренняя память небольшая (неск. тыс. чисел и команд программы), для ввода программ и данных использовались перфоленты и перфокарты; использовались в осн. для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Программирование осуществлялось на языках машинных команд, что было трудоемкой задачей, с которой были знакомы немногие. Имели довольно большой размер, содержали тысячи ламп, занимали иногда сотни кв. м, потребляли сотни киловатт электроэнергии.

2 поколение ЭВМ – 1960-е на осн. транзисторов. Быстродействие – десятки – сотни тыс. операций в сек. Объем внут. памяти возрос в сотни раз по сравнению ЭВМ 1 поколения, большое развитие получили устр-ва внешней памяти: магнитные барабаны, накопители на магнитных лентах, благодаря чему появилась возм-ть создать на ЭВМ информационно-справочные, поисковые сис-мы, позволявшие длит-но хранить на магнитных носителях большие объемы инф-ы. Развивались языки программирования высокого уровня, и составление программ больше не зависело от модели машины, стало доступнее и стало распространяться. Появились мониторные сис-мы, управляющие режимом трансляции и исполнением программ и из этих сис-м в дальнейшем были образованны современные операц. сис-мы.

3 поколение ЭВМ начали производиться в 1965-х и основывались на интегральных схемах. (Это были сложные электронные схемы, вмонтированные на маленькой пластине из полупроводникового материала площадью

Источник

Счетно-перфорационные и релейные машины

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины. В них, так же как и в Аналитической машине Бэббиджа, использовались перфокарты, но только не для представления программы, а для хранения числовой информации. Каждая такая машина могла выполнять только одну определенную программу, манипулируя с числами, пробитыми на перфокартах. Счетно-перфорационные машины осуществляли перфорацию, сортировку, суммирование, вывод на печать числовых таблиц. На этих машинах удавалось решать многие типовые задачи статистической обработки, бухгалтерского учета и др.

Г. Холлерит основал фирму по выпуску счетно-перфорационных машин, которая затем была преобразована в фирму IBM, которая ныне является самым известным в мире производителем компьютеров.

Непосредственными предшественниками ЭВМ были релейные вычислительные машины. К 30-м годам XX века получила большое развитие релейная автоматика.

В процессе работы релейной машины происходят переключения тысяч реле из одного состояния в другое.

image239

Релейная машина «Марк-2», изготовленная в 1947 году, содержала около 13 ООО реле. Одной из наиболее совершенных релейных машин была машина советского конструктора Н. И. Бессонова — РВМ-1. Она была построена в 1956 году и проработала почти 10 лет, конкурируя с существовавшими уже в то время ЭВМ. Поскольку реле — это механическое устройство, то его инерционность (задержка при переключении) достаточно велика, что сильно ограничивало скорость работы таких машин. Скорость РВМ-1 составляла 50 сложений или 20 умножений в секунду. Практически это был предел скорости для машин этого типа.

Начало эпохи ЭВМ

В первой половине XX века бурно развивалась радиотехника. Основным элементом радиоприемников и радиопередатчиков в то время были электронно-вакуумные лампы. Электронные лампы стали технической основой для первых электронно-вычислительных машин (ЭВМ).

Первая ЭВМ — универсальная машина на электронных лампах — была построена в США в 1945 году.

Эта машина называлась ENIAC (расшифровывается так: электронный цифровой интегратор и вычислитель). Конструкторами ENIAC были Дж. Моучли и Дж. Эккерт. Скорость счета этой машины превосходила скорость релейных машин того времени в тысячу раз.

Первый электронный компьютер ENIAC программировался с помощью штекерно-коммутационного способа, т. е. программа строилась путем соединения проводниками отдельных блоков машины на коммутационной доске. Эта сложная и утомительная процедура подготовки машины к работе делала ее неудобной в эксплуатации.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были разработаны крупнейшим американским математиком Джоном фон Нейманом
image241

В 1946 году в журнале Nature вышла статья Дж. фон Неймана, Г. Голдстайна и А. Беркса «Предварительное рассмотрение логической конструкции электронного вычислительного устройства». В этой статье были изложены принципы устройства и работы ЭВМ. Главный из них — принцип хранимой в памяти программы, согласно которому данные и программа помещаются в общую память машины.

Принципиальное описание устройства и работы компьютера принято называть архитектурой ЭВМ. Идеи, изложенные в упомянутой выше статье, получили название «архитектура ЭВМ Дж. фон Неймана».

В 1949 году была построена первая ЭВМ с архитектурой Неймана — английская машина EDSAC. Годом позже появилась американская ЭВМ EDVAC. Названные машины существовали в единственных экземплярах. Серийное производство ЭВМ началось в развитых странах мира в 50-х годах XX века.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев
image243

Велика роль академика С. А. Лебедева в создании отечественных компьютеров. Под его руководством в 1950-х годах были построены серийные ламповые ЭВМ БЭСМ-1 (Большая электронная счетная машина), БЭСМ-2, М-20. В то время эти машины были одними из лучших в мире.

В 60-х годах XX века С. А. Лебедев руководил разработкой полупроводниковых ЭВМ БЭСМ-ЗМ, БЭСМ-4, М-220, М-222. Выдающимся достижением того периода была машина БЭСМ-6. Это первая отечественная и одна из первых в мире ЭВМ с быстродействием один миллион операций в секунду. Последующие идеи и разработки С. А. Лебедева способствовали созданию более совершенных машин следующих поколений.

Четыре поколения ЭВМ

Электронно-вычислительную технику принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту вычислительной мощности ЭВМ, т. е. быстродействия и объема памяти. Но это не единственный признак смены поколений. При таких переходах, как правило, происходили существенные изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

Первое поколение ЭВМламповые машины 50-х годов XX века. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20). Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных.

image245

Программы для таких машин составлялись на языках машинных команд. Это довольно сложная и трудоемкая работа. Программирование в те времена было доступно немногим.

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название «транзистор». Транзисторы быстро внедрялись в радиотехнику.

В 60-х годах XX века транзисторы стали элементной базой для ЭВМ второго поколения.

Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения.

image247

Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах (НМЛ). Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы, позволявшие длительно хранить на магнитных носителях большие объемы информации.

Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало широко распространяться в системе высшего образования.

Появились мониторные системы, управляющие режимом трансляции и исполнением программ. В дальнейшем из мониторных систем выросли современные операционные системы.

Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах.

image249

Первые интегральные схемы (ИС) содержали в себе десятки, затем сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС.

ЭВМ третьего поколения начали производиться во второй половине 60-х годов прошлого века. Тогда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС. Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС. В Советском Союзе в 70-х годах XX века начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM-360/370.

Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом.

Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Как и на магнитных лентах, на дисках можно хранить большое количество информации. Вместе с тем накопители на магнитных дисках (НМД) работают гораздо быстрее, чем НМЛ. Широко стали использоваться новые типы устройств ввода/вывода: дисплеи, графопостроители.

В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

В 70-е годы XX века получила мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP-11. В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система малых ЭВМ). Они меньше, дешевле, надежнее больших машин. Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами. Во второй половине 70-х годов

XX века производство мини-ЭВМ превысило производство больших машин.

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора.

image251

Микропроцессор — это миниатюрный «мозг», работающий по программе. Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Такие микропроцессоры осуществляют автоматическое управление работой этой техники.

image253

МикроЭВМ относятся к ЭВМ четвертого поколения. Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

image256

Появление феномена персональных компьютеров (ПК) связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Арр1е-1, а в 1977 году — Арр1е-2.

Сущность того, что такое ПК, кратко можно сформулировать так:

image257

В аппаратном комплекте ПК используется цветной графический дисплей, манипуляторы типа «мышь», «джойстик», удобная клавиатура, удобные для пользователя компактные диски (оптические). Программное обеспечение позволяет человеку легко общаться с машиной, быстро усваивать основные приемы работы с ней, получать пользу от компьютера, не прибегая к программированию. Общение человека и ПК может принимать форму игры с красочными картинками на экране, звуковым сопровождением.

Неудивительно, что машины с такими свойствами быстро приобрели популярность, причем не только среди специалистов. Персональный компьютер становится такой же привычной бытовой техникой, как радиоприемник или телевизор. Их выпускают огромными тиражами, продают в магазинах.

С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer).

В конце 80-х — начале 90-х годов XX века большую популярность приобрели машины фирмы Apple Corporation марки Macintosh. В США они широко используются в системе образования.

Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания. Именно ПК сделали компьютерную грамотность массовым явлением. Развитие этого типа машин вызвало появление понятия «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей деятельности человека.

Есть и другая линия в развитии ЭВМ четвертого поколения. Это суперкомпьютеры. Машины этого класса имеют быстродействие в сотни миллионов и миллиарды операций в секунду. Только суперкомпьютеры могут справиться с обработкой больших объемов информации, например статистическими данными по переписи населения, результатами метеорологических наблюдений, финансовой информацией. Иногда скорость обработки информации имеет решающее значение. Примером может служить составление прогноза погоды, моделирование климатических изменений, позволяющее предсказать стихийное бедствие (цунами, тайфун, землетрясение и т. д.).

Суперкомпьютер — это многопроцессорный вычислительный комплекс. Высокое быстродействие достигается благодаря тому, что множество процессоров, его составляющих, осуществляют параллельную (одновременную) обработку данных.

Суперкомпьютеры являются дорогими машинами, стоимость которых может достигать десятков миллионов долларов. Поэтому возникает проблема доступности таких дорогих вычислительных ресурсов. Решение этой проблемы связано с созданием многопользовательских суперкомпьютерных центров.

В качестве альтернативы суперкомпьютерам создаются так называемые кластерные системы. Кластерная система — это сеть из множества рабочих станций на базе ПК. Чтобы рабочие станции функционировали как многопроцессорная вычислительная система, в такой сети используется специальное программное обеспечение. Оказалось, что можно построить многопроцессорный комплекс — кластер, который лишь в 2-3 раза уступает по быстродействию суперкомпьютеру, но дешевле его в сотни раз. В крупных российских университетах и научных центрах установлены и активно используются кластерные системы.

Источник

Компьютерная грамотность с Надеждой

Заполняем пробелы — расширяем горизонты!

Герман Холлерит: от табулятора к фирме IBM

После Аналитической машины Бэббиджа следующим шагом вперед в развитии вычислительной техники было создание счетно-перфорационных машин.

В 1884 году Герман Холлерит (1860-1929) оформил в Америке первый патент на созданный им перфоленточный табулятор (всего на табуляторы автор получил 22 патента).

Табулятор Холлерита

Табуляторы предназначались для автоматизации процесса переписи населения Америки, которое до этого велось крайне неэффективно и давало весьма приблизительные результаты.

tabulator

Сведения о переписи населения собирали агенты, которые записывали в специальные формуляры ответы опрашиваемых жителей по таким данным как возраст, пол, место рождения, количество детей, семейное положение и т.п.

Затем эти формуляры отсылались в Вашингтон, где содержащуюся на них информацию люди сами набивали на перфокарты с помощью перфораторов. В табуляционную машину вводилась колода заранее подготовленных перфокарт, и далее все происходило без вмешательства человека: считывание информации с перфокарт и проведение необходимых вычислительных операций.

Точнее, перфокарты нанизывались на ряды тонких игл, по одной игле на каждую из перфорируемых позиций на карте. Если игла попадала в отверстие, она проходила его и тем самым замыкала контакт в электрической цепи машины.

Это приводило к тому, что счетчик, который состоял из вращающихся цилиндров, продвигался на одну позицию вперед (т.е. добавлялась единичка к определенному показателю переписи).

tabulaytor Hollerita

Счетчики в табуляторе Холлерита

Промежуточные результаты вычислений записывались в запоминающие регистры, а окончательные – печатались на бумаге. Управление вычислительным процессом, т.е. порядок действий табуляционной машины, определялся соответствующей коммутацией электрических связей на коммутационной доске.

Из чего состоял табулятор

Таким образом, машина Холлерита в зачаточном виде содержала все необходимые элементы вычислительного автомата, работающего без вмешательства человека:

Этот проект был запатентован как Электрическая табулирующая система Холлерита (англ. Hollerith Electric Tabulating System).

Подробнее посмотреть принцип действия этой системы можно в видеоролике:

Компьютер в России, 19 век: как это было

Итоги переписи

В переписи населения США 1890 г. Холлерита ждал полный успех: предварительный подсчет результатов был проведен в течение 6 недель после проведения переписи.
Было насчитано 62 622 250 граждан. Данные переписи были полностью обработаны за два с небольшим года (результаты предыдущей переписи обрабатывались в течение семи лет).

Электрическая табулирующая система применялась также при переписи:

От табулятора к компьютеру без усилий

Hollerit1

3 декабря 1896 года Холлерит зарегистрировал фирму Tabulating Machine Company с уставным капиталом в 100 000 USD по выпуску счетно-перфорационных машин.

В 1911 г. он продал свою фирму и зажил жизнью богатого человека, оставаясь консультантом в своей бывшей фирме.

В 1924 году эта фирма была преобразована в фирму IBM (International Machines Corporation) – ныне самого известного в мире производителя компьютеров.

Холлериту так и не досталось ни одной акции IBM, хотя именно его табуляционные машины принесли в итоге баснословные дивиденды счастливым акционерам.

Счетно-перфорационные машины просуществовали вплоть до 70-х годов 20 века, когда на смену им пришли более совершенные электронные цифровые вычислительные машины (ЦВМ).

Польза от табуляторов для прогресса

Историческое значение счётно-перфорационных машин состоит в том, что их применение позволило накопить опыт машинной обработки информации и понять, что автоматически действующая ЦВМ должна обладать следующими возможностями:

Нашли ошибку? Выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто