Основные этапы
Процесс эволюции счетных устройств начался в древние времена и продолжается сегодня. За это время люди создали различные приспособления для счета. Краткая история их развития может быть описана с помощью основных этапов:
Классификация истории развития вычислительной техники на хронологические этапы является условной. При использовании одного счетного устройства активно появлялись предпосылки для разработки следующего поколения девайсов.
Простейшие устройства
Сначала люди использовали для счета 10 пальцев на своих руках, а результаты вычислений фиксировались на камне, дереве и т. д. Когда появилась письменность, человек разработал различные способы записи цифр и системы счисления:
На рубеже IV столетии до н. э. появился абак. Это приспособление представляло собой глиняную дощечку, на которую заостренным предметом наносились полоски. Вычисления осуществлялись посредством размещения на этих полосах различных предметов небольшого размера.
Первые счеты были изобретены в Китае — суанпан. Это приспособление представляло собой деревянную раму, на которой были натянуты нити в количестве 10 или больше. Еще одна веревочка располагалась перпендикулярно остальным и делила приспособление на 2 неравные части. В отделении большего размера (земля) на каждую ниточку нанизывалось по 5 косточек. Меньшее отделение называлось «небо», а каждая веревочка, расположенная в нем, содержала по 2 косточки.
В XVII веке математик Непер из Шотландии открыл логарифмы, основываясь на работе шотландского ученого, Гантер (Англия) смог создать логарифмическую линейку. Это устройство используется и сегодня, хотя его первоначальная конструкция претерпела серьезные изменения.
Изобретение Гантера позволяла выполнять следующие операции:
Это устройство стало последним приспособлением домеханической эры развития вычислительной техники.
Механические машины
В 1673 году известный ученый Лейбниц изобрел устройство, которое, помимо простейших операций с числами, позволяло извлекать квадратный корень. Чтобы этот ступенчатый вычислитель мог функционировать, ученому пришлось разработать двоичную систему счисления.
Через 2 столетия французский математик Ксавье Тома де Кальмар, основываясь на работах Лейбница, изготовил арифмометр. Эта машина уже могла делить и перемножать числа. Английский ученый Бэббидж через 2 года начал создавать устройство, способное выполнять вычисления с точностью до 20 знаков после запятой. Однако этот проект так и не был завершен.
Впрочем, имя Бэббиджа навсегда вошло в историю развития счетных устройств. Именно этот человек разработал машину, управлять которой можно было программно. В качестве носителя информации использовались перфокарты. С этим же устройством связано и имя первого программиста на планете — Ада Лавлейс. Именно этой женщине удалось создать первые программы для машины Бэббиджа.
Компьютерная техника
Первый аналог компьютера был создан еще в 1887 году американцем Голлеритом. Он разработал табулятор, который представлял собой электромеханическую вычислительную машину. В конструкции устройства присутствовали реле, счетчики и специальный сортировочный ящик. Машина могла сортировать статистические данные, записанные на перфокартах. Компания, созданная Голлеритом, затем превратилась в известную корпорацию IBM.
Также стоит отметить основные изобретения и теории, давшие в будущем толчок к развитию компьютерной техники:
Начало эры
Во многом активное развитие ЭВМ связано со Второй мировой войной. Правительства некоторых стран-участниц этого конфликта стремились получить стратегическое преимущество перед противником и начали финансировать работы по разработке вычислительных машин. Пионером компьютеростроения стал инженер из Германии Цузе. Им была сконструирована машина Z3, которая могла оперировать числами с плавающей запятой, работая при этом в двоичной системе. В качестве носителя информации в ней использовалась перфолента.
Однако первым функционирующим компьютером следует считать новую машину немецкого инженера — Z4. Он же разработал и первый язык программирования под названием Планкалкюль. В 1942 году 2 американских исследователя (Джон Атанасов и Клиффорд Берри) создали машину, работающую на вакуумных трубках. Она использовала двоичный код и выполняла ряд логических операций.
При поддержке правительства Англии в 1943 году была построена первая ЭВМ — Колосс. Работы над этим устройством велись в условиях максимальной секретности.
В состав машины входило около 2000 электронных ламп. Колосс использовался для взлома немецких кодов, создаваемых с помощью шифровального устройства Энигма. После завершения войны ЭВМ была уничтожена в соответствии с личным приказом Черчилля.
Работа над архитектурой
Прообраз архитектуры современного ПК был создан в 1945 году американским ученым фон Нейманом. Он первым предложил записывать программу в форме кода непосредственно в память вычислительного устройства. В те времена в США активно работали над созданием первого компьютера, способного решать различные задачи — ENIAC. Эта машина весила порядка 30 тонн, а для ее размещения требовалось около 170 м² площади.
В состав конструкции машины входило 18000 ламп. В течение 1 секунды она выполняла 5000 операций сложения либо 300 умножения. На европейском континенте первый универсальный компьютер был создан в СССР. Команда под руководством Сергея Лебедева в 1950 году сконструировала МЭСМ (малая электронная счетная машина). Для ее работы требовалось порядка 6000 ламп, а быстродействие компьютера составляло 50 операций в секунду. Эта же группа ученых через 2 года создала большую электронную счетную машину. Ее быстродействие составляло 10000 операций в секунду.
Создание полупроводниковых приборов
Главным недостатком электронных ламп был невысокий срок службы. Так как эти устройства быстро выходили из строя, обслуживание вычислительной машины существенно усложнялось. Проблема была решена в 1947 году, когда был изобретен транзистор. Полупроводниковые устройства выполняли аналогичные функции, что и лампы, но при этом имели ряд преимуществ:
Именно появление полупроводниковых приборов позволило компьютерам приобрести вид, напоминающий современные ПК. Благодаря работе американских инженеров Кибли и Нойса мир узнал о микросхемах. Основу этих устройств составлял германиевый либо кремниевый кристалл, на котором монтировались миниатюрные полупроводниковые приборы. Их количество достигало десятки и даже сотни тысяч.
Появление микросхем дало новый толчок к развитию ЭВМ. В 1964 году корпорация IBM представила первую машину семейства SYSTEM 360. В СССР первый компьютер на микросхемах был разработан в 1972 году, а назывался он ЕС. В его основе лежали разработки американской компании IBM. Одновременно с развитием компьютеров начинает активно совершенствоваться и программное обеспечение (софт). В 1964 году был разработан язык Бейсик, предназначенный для начинающих программистов. В 1969 году появился Паскаль, с помощью которого можно было решать различные прикладные задачи.
Персональные компьютеры
В начале 70-х годов стартовал выпуск четвертого поколения компьютеров. Это время для индустрии характеризуется началом использования в производстве вычислительной техники БИС (большая интегральная схема). Благодаря этому производительность ЭВМ достигла отметки в тысячи миллионов операций в секунду. Кроме этого, существенно снизилась и себестоимость производства ПК, что сделало их более доступными для обычного потребителя.
Одним из первых массовых компьютеров стала машина, созданная компанией Apple. Произошло это в 1976 году. В разработке ПК принимали участие Стив Возняк и Стив Джобс. Его стоимость составляла лишь 500 долларов. В 1977 году вышла вторая модель этого компьютера — Apple II. Роль этих личностей в развитии компьютерной техники сложно переоценить.
Быстрое распространение недорогих компьютеров привело к значительному падению прибыли компании IBM. Это факт вызвал беспокойство у ее руководства, и в 1979 году на рынке появился первый ПК от американского концерна. В нем был установлен процессор от Интел 8088, ОЗУ в объеме 64 Кбайт и дисковод для дискет. Специально для него компания Микрософт разработала новую операционную систему, в которой все было понятно даже новичку.
В дальнейшем наблюдалось стремительное развитие компьютерной техники. Новые процессоры начинают создаваться ежегодно и каждое новое поколение превосходит в производительности прошлое. Вся история развития ПК может быть представлена в таблице:
Поколение | Элементная база | Быстродействие, операций в секунду | ПО | Применение | Примеры |
I (1946−1959) | Электронные лампы | Не более 20000 | Машинные языки | Расчетные задачи | ЭНИАК и МЭСМ |
II (1960−1969) | Полупроводниковые приборы | От 100 до 500 тысяч | Алгоритмические языки | Экономические, инженерные и научные задачи | БЭСМ-4, IBM 701 |
III (1970−1979) | ИМС (интегральные микросхемы) | Около 1 миллиона | Операционные системы | САПР, научные и технические задачи, АСУ | ЕС 1060, IBM 360 |
IV (с 1980 и до настоящего времени) | Микропроцессоры и БИС | Минимум десятки миллионов | Базы данных (БД) | АРМ, работа с графикой и текстами | Серверы и ПЭВМ |
V (с 1990 до настоящего времени) | СБИС | Более миллиарда | Мощные вычислительные системы, искусственный интеллект | Все области | Ноутбуки, рабочие станции |
Сейчас компьютер можно найти практически в каждом доме, а жизнь современного человека сложно представить без ПК.
История развития вычислительной техники
Всего получено оценок: 415.
Всего получено оценок: 415.
Электронно-вычислительные машины прочно вошли во все сферы жизнедеятельности современного общества. К своему высокотехнологичному состоянию средства вычислительной техники шли путем долгой эволюции. Кратко об истории развития вычислительной техники можно прочесть в данной статье.
История развития вычислительной техники
Информатика как наука, включает в себя много направлений, в том числе и раздел, связанный с изучением вычислительной техники. История развития вычислительной техники насчитывает тысячи лет, с момента возникновения первых счетных палочек до современных высокотехнологичных компьютерных средств.
Первые приспособления для счета
Первыми устройствами для выполнения простых арифметических операций, известными исторической науке, были счеты. Так, среди культурных артефактов древнего мира – Египта, Вавилона, Греции, Рима, Китая можно найти специальный предмет, предназначенный для счета – абак. Абак представляет собой доску, на которой в специальных углублениях расположены небольшие камни. Современные варианты счетов, в виде бусин, нанизанных на проволоку, используются, и посей день для выполнения операций сложения и вычитания.
Для более сложных операций, таких как умножение, деление, возведение в степень, вычисление корней и логарифмов, были придуманы различные приспособления. Это логарифмические линейки и таблицы. Логарифмическая линейка была изобретена в 1622 году англичанином Уильямом Отредом, а первая таблица появилась в 1614 году и содержала значения тригонометрических функций.
Механические устройства для вычислений
Как техническое средство вычислительная техника берет начало от арифмометров – механических вычислительных устройств, выполняющих поразрядные операции умножения, деления, сложения и вычитания. Известны «Считающие часы», созданные немецким ученым Вильгельмом Шиккардом (1623 г.), «Паскалина» – изобретение французского механика Блеза Паскаля (1642 г.), «Ступенчатый вычислитель» Готфрида Вильгельма Лейбница (1673 г).
Рис. 2. Арифмометр.
Итогом механического периода вычислительных приборов стала разработка английского ученого Чарльза Беббиджа, ставшая прообразом современного компьютера. Задумка аналитической машины, представляла собой проект вычислительного устройства общего назначения, в котором в качестве носителя информации использовались перфокарты. Эта машина, хоть и не была построена при жизни ученого, послужила примером для создания современных компьютеров.
Следующей вехой в развитии вычислительных комплексов явилось использование электромеханических устройств. Первым представителем семейства электромеханических машин стал табулятор Холлерита, разработанный в 1887 г, позволявший автоматизировать и ускорить обработку статистической информации.
Программируемые вычислители
Результатом эволюции вычислительных устройств явилось создание электронной вычислительной машины в том виде, в котором мы привыкли ее сейчас видеть. Однако и ЭВМ прошли несколько этапов развития, связанных в первую очередь, с развитием электронной элементной базы:
Следующий этап развития ЭВМ связан с изобретением полупроводникового транзистора — компактного и экономичного аналога электронной лампы. Быстродействие подобных устройств увеличилось уже до сотен тысяч операций в секунду, а их габариты и энергопотребление значительно снизилось. Что привело к более широкому распространению ЭВМ и упрощению взаимодействия с пользователем. Одним из представителей семейства полупроводниковых машин является ЭВМ БСЭМ-6 (СССР, 1959 г.)
Объединение транзисторных схем в отдельные интегральные микросхемы (ИМС) дало толчок третьему поколению компьютеров. Для этого этапа характерно дальнейшее увеличение производительности и снижение стоимости производства и эксплуатации. А также появление различных периферийных устройств, таких как накопители на магнитных дисках, дисплеи, графопостроители. Среди машин третьего поколения можно выделить IBM-360 (США) и ЕС ЭВМ (СССР).
В настоящее время все компьютеры относятся к четвертому поколению и основаны на использовании микропроцессоров — сверхбольших интегральных схем. Это первый тип компьютеров, который появился в розничной продаже.
Первые компьютеры — это профессия. До того как были созданы компьютерные устройства, компьютерами называли людей, занимавшихся выполнением сложных вычислений на арифмометрах. Как правило, этой профессией овладевали женщины, многие из которых затем с успехом работали программистами.
Что мы узнали?
История развития вычислительной техники берет свое начало в древности. Первыми приспособлениями для вычислений были счеты, логарифмические линейки, арифмометры. Прообразом современного компьютера была аналитическая машина Чарльза Бэббиджа. Развитие компьютерной техники проходило параллельно совершенствованию ее элементной базы: от вакуумных ламп до интегральных микросхем.
Первое поколение компьютеров: от Древнего Рима до Второй Мировой
Лень — двигатель прогресса. Стремление человечества хотя бы частично автоматизировать свою деятельность всегда выливалось в различные изобретения. Математические вычисления и подсчеты также не избежали научного прогресса. Ещё в Древнем Риме местные «таксисты» использовали аналог современного таксометра — механическое устройство, которое определяло стоимость поездки в зависимости от длины маршрута. Время шло, и к середине прошлого века эволюция вычислительных систем привела к появлению нового типа устройств — компьютеров. Тогда, конечно, их так никто не называл. Для этого использовался другой термин — ЭВМ (электронно-вычислительная машина). Но время и прогресс стерли границы между этими определениями. Так как же прогресс дошел до первых ЭВМ и как они работали?
История развития
Арифмометр
Данная машина представляла собой 13-разрядную суммирующую машину.
В следующем году вокруг этой машины начали появляться различные возражения, а именно по поводу её механизма. Существовало мнение о том, что машина да Винчи представляет собой механизм пропорционирования, а не счетную машину. Также возникал вопрос и о её работе: по идее, 1 оборот первой оси вызывает 10 оборотов второй, 100 оборотов третьей и 10 в степени n оборотов n-ной оси. Работа такого механизма не могла осуществляться из-за огромной силы трения. По итогу голоса сторонников и противников счетной машины Леонардо да Винчи разделились, но, тем не менее, IBM решила убрать эту модель из коллекции
Но, оставим наработки Леонардо Да Винчи. Расцвет арифмометров пришелся на 17 век. Первой построенной моделью стал арифмометр Вильгельма Шиккарда в 1623 году. Его машина была 6-разрядной и состояла из 3 блоков — множительного устройства, блока сложения-вычитания и блока записи промежуточных результатов.
Копия арифмометра Шиккарда
Также 17 век отметился ещё несколькими арифмометрами: «паскалина» за авторством Блеза Паскаля, арифмометр Лейбница и машина Сэмюэля Морленда. В промышленных масштабах арифмометры начали производиться в начале 19 века, а распространены были практически до конца 20-го.
Аналитическая и разностная машины Бэббиджа
Чарльз Бэббидж — английский математик, родившийся в конце 18 века. На его счету числится большое количество научных работ и изобретений. Но в рамках данной статьи нас интересуют два его проекта: аналитическая машина и разностная машина.
Идея о создании разностной машины не принадлежит Чарльзу Бэббиджу. Она впервые была описана немецким инженером Иоганном Мюллером в книге с очень сложным названием. До конца не ясно, повлияли ли на Бэббиджа идеи Мюллера при создании разностной машины, поскольку Чарльз ознакомился с его работой в переводе, дата создания которого неизвестна.
Книга Иоганна Мюллера
Считается, что основные идеи для создания разностной машины Бэббидж взял из работ Гаспара де Прони и его идей о декомпозиции математических работ. Его идея заключалась в следующем: есть 3 уровня, на каждом из которых математики занимаются решением определенных проблем. На верхнем уровне находятся самые крутые математики и их задача — вывод математических выражений, пригодных для расчетов. У математиков на втором уровне стояла задача вычислять значения функций, которые вывели на верхнем уровне, для аргументов, с определенным периодом. Эти значения становились опорными для третьего уровня, задачей которого являлись рутинные расчеты. От них требовалось делать только грамотные вычисления. Их так и называли — «вычислители». Эта идея навела Бэббиджа на мысль о создании машины, которая могла бы заменить «вычислителей». Машина Бэббиджа основывалась на методе аппроксимации функций многочленами и вычисления конечных разностей. Собственно, поэтому машина и называется разностной.
В 1822 году Бэббидж построил модель разностной машины и заручился государственной поддержкой в размере 1500 фунтов стерлингов. Он планировал, что закончит машину в течение 3 лет, но по итогу работа была не завершена и через 9 лет. За это время он получил ещё 15500 фунтов стерлингов в виде субсидий от государства. Но всё же часть машины функционировала и производила довольно точные (>18 знаков после запятой) расчеты.
Созданная на основе работ Бэббиджа разностная машина
Во время работы над разностной машиной у Чарльза Бэббиджа возникла идея о создании аналитической машины — универсальной вычислительной машины. Её называют прообразом современного цифрового компьютера, и не зря. Она состояла из арифметического устройства (»мельницы»), памяти (»склада») и устройства ввода-вывода, реализованного с помощью перфокарт различного типа. К сожалению, данная идея осталась лишь на бумаге.
Схема аналитической машины Бэббиджа
Табулятор
История электромеханических машин начинается в 1888 году, когда американский инженер Герман Холлерит, основатель компании CTR (будущая IBM), изобрел электромеханическую счетную машину — табулятор, который мог считывать и сортировать данные, закодированные на перфокартах. В аппарате использовались электромагнитные реле, известные еще с 1831 года и до Холлерита не применявшиеся в счетной технике. Управление механическими счетчиками и сортировкой осуществлялось электрическими импульсами, возникающими при замыкании электрической цепи при наличии отверстия в перфокарте. Импульсы использовались и для ввода чисел, и для управления работой машины. Поэтому табулятор Холлерита можно считать первой счетной электромеханической машиной с программным управлением. Машину полностью построили в 1890 году и использовали при переписи населения США в том же году. Впоследствии табуляторы использовались вплоть до 1960-х — 1970-х годов в бухгалтерии, учете, обработке данных переписей и подобных работах. И даже если в учреждении имелась полноценная ЭВМ, табуляторы все равно использовали, чтобы не нагружать ЭВМ мелкими задачами.
Электромеханические машины времен ВМВ
В 1937 году Клод Шеннон в своей работе A Symbolic Analysis of Relay and Switching Circuits показал, что электронные связи и переключатели могут представлять выражения булевой алгебры. Машины тех лет можно условно на два типа: электромеханические (основанные на электромагнитных переключателях) и электронные (полностью на электровакуумных лампах). К первым относились американский Harvard Mark I и компьютеры немецкого инженера Конрада Цузе.
Mark I
Работа над Mark I началась в 1939 году в Endicott laboratories по субподрядному договору с IBM. В качестве основы использовались наработки Чарльза Бэббиджа. Компьютер последовательно считывал инструкции с перфоленты, условного перехода не было, циклы организовывались в виде склеенных в кольцо кусков перфоленты. Принцип разделения данных и инструкций в Mark I получил известность как Гарвардская архитектура. Машину закончили в 1944 году и передали в ВМФ США. Характеристики:
В 1936 немецкий инженер Конрад Цузе начал работу над своим первым вычислителем Z1. Первые две модели из серии Z были демонстративными. Следующий же компьютер, Z3, который закончили в 1941, имел практическое применение: с его помощью делали аэродинамические расчеты (стреловидные крылья самолетов, управляемые ракеты). Машина была выполнена на основе телефонных реле. Инструкции считывались с перфорированной пленки. Так же, как в Mark I, отсутствовали инструкции условного перехода, а циклы реализовывались закольцованной перфолентой. Z3 имел некоторые преимущества перед своими будущими собратьями (ENIAC, Mark I): вычисления производились в двоичной системе, устройство позволяло оперировать числами с плавающей точкой. Так как Цузе изначально исходил из гражданских интересов, его компьютеры более близки к современным, чем тогдашние аналоги. В 1944 году практически был завершен Z4, в котором уже присутствовали инструкции условного перехода. Характеристики Z3:
Первые ламповые компьютеры
Однозначно определить первый в мире компьютер сложно. Многими учеными определение первого поколения основывается на вычислительной базе из электронных ламп. При этом первое поколение компьютеров разрабатывалось во время Второй мировой войны. Возможно, созданные в то время компьютеры засекречены и по сей день. В целом выделяют два возможных первенца — ENIAC и Colossus
ENIAC
Electronic Numerical Integrator and Computer (Электронный числовой интегратор и вычислитель) или ENIAC создавался по заказу от армии США для расчета баллистических таблиц. Изначально, подобные расчеты производились людьми и их скорость не могла соотноситься с масштабом военных действий. Построен компьютер был лишь к осени 1945 года.
Colossus
Colossus в отличие от ENIAC был очень узконаправленной машиной. Он создавался исключительно с одной целью — декодирование немецких сообщений, зашифрованных с помощью Lorenz SZ. Эта машина было схожа с немецкой Enigma, но состояла из большего числа роторов. Для декодирования этих сообщений было решено создать Colossus. Он включал в себя 1500 электронных ламп, потреблял 8,5 КВт и обладал тактовой частотой в 5.8 МГц. Такое значение частоты достигалось за счет того, что Colossus был создан для решения только одной задачи и применяться в других областях не мог. К концу войны на вооружении Британии стояло 10 таких машин. После войны все они были уничтожены, а данные о них засекречены. Только в 2000 году эта информация была рассекречена.
Реконструированная модель Colossus
Принцип работы
Вакуумные лампы
Радиолампа представляет собой стеклянную колбу с электродами, из которой откачан воздух. Простейшая разновидность ламп — диод, состоящий из катода и анода, а также спирали, разогревающей катод до температур, при которых начинается термоэлектронная эмиссия. Электроны покидают катод и под действием разности потенциалов притягиваются к аноду. В обратном направлении заряд не переносится, так как заряженных ионов в колбе нет (вакуум). При изменении полярности электроны, покинувшие разогретый электрод, будут притягиваться обратно. До второго электрода они долетать не будут, отталкиваясь от него из-за отрицательного потенциала. Если добавить еще один электрод, то получится триод. В электровакуумном триоде устанавливается сетка между катодом и анодом. При подаче на сетку отрицательного потенциала она начинает отталкивать электроны, не позволяя им достичь анода. При подаче модулированного сигнала ток будет повторять изменения потенциала на сетке, поэтому изначально триоды использовали для усиления сигналов.
Радиолампа и схема триггера на двух триодах
Если взять два триода и соединить анод каждого с сеткой другого, то мы получим триггер. Он может находиться в одном из двух состояний: если через один триод идет ток (триод открыт), то на сетке второго триода появляется потенциал, препятствующий току через второй триод (триод закрыт). Если кратковременно подать отрицательный потенциал на сетку открытого триода, то мы прекратим ток через него, что откроет второй триод, который уже закроет первый. Триоды поменяются местами. Таким образом можно хранить один бит информации. Через другие схемы триодов можно строить логические вентили, реализующие конъюнкцию, дизъюнкцию и отрицание, что позволяет создать электронно-вычислительное устройство.
Запоминающее устройство
На первых порах развития ЭВМ использовались разные подходы к созданию запоминающих устройств. Помимо памяти на триггерах из радиоламп и на электромагнитных реле (как в Z3) имелись следующие виды:
Линии задержки
Основная идея линий задержки возникла в ходе разработки радаров во время Второй мировой войны. В первых ЭВМ в качестве линий использовались трубки с ртутью (у нее очень низкое затухание ультразвуковых волн), на концах которой располагались передающий и принимающий пьезокристаллы. Информация подавалась с помощью импульсов, модулированных высокочастотным сигналом. Импульсы распространялись в ртути. Информационная емкость трубки в битах равнялась максимальному количеству одновременно передаваемых импульсов. Единица кодировалось присутствием импульса на определенном «месте», ноль — отсутствием импульса. Приемный пьезокристалл передавал импульс на передающий — информация циркулировала по кругу. Для записи вместо регенерации импульсов вводились записываемые. Такой вид памяти использовался в компьютерах EDVAC, EDSAC и UNIVAC I.
Запоминающее устройство на ртутных акустических линиях задержки в UNIVAC I
Запоминающие электронно-лучевые трубки (трубки Уильямса)
При попадании электронного луча на точку на люминофорном экране происходит вторичная эмиссия и участок люминофора приобретает положительный заряд. Благодаря сопротивлению люминофорного слоя, точка долю секунды держится на экране. Однако, если не отключать луч сразу, а сдвинуть его в сторону от точки, рисуя тире, то электроны, испущенные во время эмиссии, поглощаются точкой, и та приобретает нейтральный заряд. Таким образом, если выделить N точек, то можно записать N бит информации (1 — нейтральный заряд, 0 — положительный заряд). Для считывания информации используется доска с электродами, прикрепленная к внешней стороне экрана. Электронный луч снова направляется в точку, и та приобретает положительный заряд независимо от изначального. С помощью электрода можно определить величину изначального заряда (значение бита), однако информация уничтожается (после каждого считывания нужна перезапись). Так как люминофор быстро теряет заряд, необходимо постоянно считывать и записывать информацию. Такой вид памяти использовался в Манчестерском Марк I и Ferranti Mark1; американских IBM 701 и 702
Магнитные барабаны
Магнитные барабаны чем-то похожи на современные магнитные диски. На поверхность барабана был нанесен тонкий ферромагнитный слой. Несколько считывающих головок, расположенных по образующим диска, считывают и записывают данные на своей отдельной магнитной дорожке.
Архитектура фон Неймана
Архитектура фон Неймана строилась на следующих принципах:
Основным недостатком этой архитектуры является ограничение пропускной способности между памятью и процессором. Из-за того, что программа и данные не могут считываться одновременно, пропускная способность между памятью и процессором существенно ограничивает скорость работы процессора. В дальнейшем, данную проблему решили с помощью введения кеша, что вызвало другие проблемы( например, уязвимость Meltdown).
Справедливости ради необходимо уточнить, что данные идеи не являются идеями Джона фон Неймана в полной степени. Также в их разработке участвовали ещё несколько ученых, пионеров компьютерной техники: Джон Преспер Экерт и Джон Уильям Мокли.
Гарвардская архитектура
Языки
В самых первых компьютерах программы считывались с перфоленты (как в Z3 и Mark I). Устройство чтения перфоленты предоставляло управляющему устройство код операции для каждой инструкции и адреса памяти. Затем управляющее устройство все это декодировало, посылало управляющие сигналы вычислительному блоку и памяти. Набор инструкций жестко задавался в схеме, каждая машинная инструкция (сложение, сдвиг, копирование) реализовывалась непосредственно в схеме. В ENIAC для изменения программы его нужно было перекоммутировать заново, на что уходило значительное время. Машинные коды считают первым поколением языков программирования.
Перфорированная лента с программой вычислений
Первые программисты всегда имели при себе блокнот, в который они записывали наиболее употребляемые подпрограммы — независимые фрагменты программы, вызываемые из главной подпрограммы, например извлечение корня или вывод символа на дисплей. Проблема состояла в том, что адреса расположения переменных и команд менялись в зависимости от размещения в главной программе. Для решения этой проблемы кембриджские программисты разработали набор унифицированных подпрограмм (библиотеку), которая автоматически настраивали и размещали подпрограммы в памяти. Морис Уилкс, один из разработчиков EDSAC (первого практически реализованного компьютера с хранимой в памяти программой), назвал библиотеку подпрограмм собирающей системой (assembly system). Теперь не нужно было собирать программу вручную из машинных кодов, специальная программа (ассемблер) «автоматически» собирала программу. Первые ассемблеры спроектированы Кэтлин Бут в 1947 под ARC2 и Дэвидом Уилером в 1948 под EDSAC. При этом сам язык (мнемоники) называли просто множеством базовых команд или начальными командами. Использовать слово «ассемблер» для процесса объединения полей в командное слово начали в поздних отчетах по EDSAC. Ассемблер можно назвать вторым поколением языков.
«Начальные команды» для EDSAC
Компьютеры первого поколения в СССР
После Второй мировой войны часть немецких разработок в области компьютерных технологий перешли СССР. Ведущие специалисты сразу заинтересовались возможностями ЭВМ, а правительство согласилось, что устройства для быстрых и точных вычислений — это перспективное направление.
МЭСМ и БЭСМ
В 1948 году основоположник советской вычислительной техники С.А. Лебедев направил в Академию наук СССР докладную записку: в ней сообщалось о необходимости создания ЭВМ для практического использования и научного прогресса. Для разработки этой машины под Киевом, в Феофании институту отвели здание, ранее принадлежавшее монастырю. Через 2 года МЭСМ (малая электронная счетная машина) произвела первые вычисление — нахождение корней дифференциального уравнения. В 1951 году инспекция из академии наук приняла работу Лебедева. МЭСМ имела сложную трехадресную систему команд и следующие характеристики:
В 1950 году Лебедева перевели в Москву. Там он начал работать над БЭСМ-1 и к 1953 году построил опытный образец, отличавшийся отличной производительностью. Характеристики были следующими:
Серия «М» и «Стрела»
В тоже время в Москве велась работа над М-1. М-1 была намного менее мощной, чем МЭСМ, но при этом занимала намного меньше места и тратила меньше энергии. Характеристики М-1:
В 1952 году на свет выпустили М-2. Её мощность увеличилась практически в 100 раз, при этом количество ламп увеличилось только вдвое. Подобный результат получился благодаря использованию управляющих полупроводниковых диодов. Характеристики М-2 были следующие:
В «массовое» производство первой попала «Стрела». Всего было произведено 7 штук. Характеристики «Стрелы» были следующие:
Во многих смыслах «Стрела» была хуже М-2. Она выполняла всё те же 2 тысячи операций в секунду, но при этом занимала на порядок больше места и тратила в несколько раз больше электричества. М-2 не попала в массовое производство, поскольку её создатели не уложились в срок. М-1 не обладала хорошей производительностью и к моменту, когда М-2 была доведена до ума, «Стрела» была отдана в производство.
Следующий потомок серии «М» — М-3 вышел в 1956 году и был в каком-то смысле урезанным вариантом. Она выполняла порядка 30 операций в секунду, но при этом занимала мало места, благодаря чему пошла в серийное производство. Характеристики М-3 были следующие:
Эпилог
Без технологического рывка, сделанного в 40-е годы, и четко сформированного вектора развития вычислительной техники, возможно, сегодня мы бы и не сидели в компьютерах и телефонах, читая статейки на хабре. Как показал опыт разных ученых, порой уникальные и революционные для своего времени образцы вычислительной техники не были востребованы как государством, так и обществом (например, машины серии Z Конрада Цузе). Переход ко второму поколению компьютеров во многом определился сменой вакуумных ламп на транзисторы и изобретением накопителей на ферритовых сердечниках. Но это уже другая история…
Облачные серверы от Маклауд быстрые и надежные. Без древнего железа.
Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!