Изучение законов поступательного движения на машине Атвуда: формулы и пояснения
Использование простых механизмов в физике позволяет изучать различные природные процессы и законы. Одним из этих механизмов является машина Атвуда. Рассмотрим в статье, что она собой представляет, для чего используется, и какие формулы описывают принцип ее работы.
Что такое машина Атвуда?
Названная машина представляет собой простой механизм, состоящий из двух грузов, которые соединены переброшенной через неподвижный блок нитью (веревкой). В данном определении следует пояснить несколько нюансов. Во-первых, массы грузов в общем случае являются разными, что обеспечивает наличие у них ускорения под действием силы тяжести. Во-вторых, нить, связывающая грузы, считается невесомой и нерастяжимой. Эти предположения значительно облегчают последующие расчеты уравнений движения. Наконец, в-третьих, неподвижный блок, через который переброшена нить, также считается невесомым. Кроме того, во время его вращения пренебрегают силой трения. Ниже на схематическом рисунке показана эта машина.
Вам будет интересно: Пространственная экономика: описание специальностей и структура
Вам будет интересно: Что такое подполье? Подпольная организация «Молодая гвардия». Антифашистское движение
Машина Атвуда была изобретена английским физиком Джорджем Атвудом в конце XVIII века. Служит она для изучения законов поступательного движения, точного определения ускорения свободного падения и экспериментальной проверки второго закона Ньютона.
Уравнения динамики
Каждый школьник знает, что ускорение у тел появляется только в том случае, если на них оказывают действие внешние силы. Данный факт был установлен Исааком Ньютоном в XVII веке. Ученый изложил его в следующем математическом виде:
Где m – инерционная масса тела, a – ускорение.
Изучение законов поступательного движения на машине Атвуда предполагает знание соответствующих уравнений динамики для нее. Предположим, что массы двух грузов равны m1 и m2, причем m1>m2. В таком случае первый груз будет перемещаться вниз под действием силы тяжести, а второй груз будет двигаться вверх под действием силы натяжения нити.
Рассмотрим, какие силы действуют на первый груз. Их две: сила тяжести F1 и сила натяжения нити T. Силы направлены в разных направлениях. Учитывая знак ускорения a, с которым перемещается груз, получаем следующее уравнение движения для него:
Что касается второго груза, то на него действуют силы той же природы, что и на первый. Поскольку второй груз движется с ускорением a, направленным вверх, то уравнение динамики для него принимает вид:
Таким образом, мы записали два уравнения, в которых содержатся две неизвестных величины (a и T). Это означает, что система имеет однозначное решение, которое будет получено далее в статье.
Расчет уравнений динамики для равноускоренного движения
Как мы видели из записанных выше уравнений, результирующая сила, действующая на каждый груз, остается неизменной в процессе всего движения. Масса каждого груза также не меняется. Это означает, что ускорение a будет постоянным. Такое движение называют равноускоренным.
Изучение равноускоренного движения на машине Атвуда заключается в определении этого ускорения. Запишем еще раз систему динамических уравнений:
Чтобы выразить значение ускорения a, сложим оба равенства, получаем:
Подставляя явное значение сил тяжести для каждого груза, получаем конечную формулу для определения ускорения:
Отношение разницы масс к их сумме называют числом Атвуда. Обозначим его na, тогда получим:
Проверка решения уравнений динамики
Выше мы определили формулу для ускорения машины Атвуда. Она является справедливой только в том случае, если справедлив сам закон Ньютона. Проверить этот факт можно на практике, если провести лабораторную работу по измерению некоторых величин.
Лабораторная работа с машиной Атвуда является достаточно простой. Суть ее заключается в следующем: как только грузы, находящиеся на одном уровне от поверхности, отпустили, необходимо засечь время движения грузов секундомером, а затем, измерить расстояние, на которое переместился любой из грузов. Предположим, что соответствующие время и расстояние равны t и h. Тогда можно записать кинематическое уравнение равноускоренного движения:
Откуда ускорение определяется однозначно:
Отметим, что для увеличения точности определения величины a, следует проводить несколько экспериментов по измерению hi и ti, где i – номер измерения. После вычисления значений ai, следует рассчитать среднюю величину acp из выражения:
Где m – количество измерений.
Приравнивая это равенство и полученное ранее, приходим к следующему выражению:
Если данное выражение оказывается справедливым, то таковым также будет и второй закон Ньютона.
Расчет силы тяжести
Выше мы предположили, что значение ускорения свободного падения g нам известно. Однако при помощи машины Атвуда определение силы тяжести также оказывается возможным. Для этого вместо ускорения a из уравнений динамики следует выразить величину g, имеем:
Чтобы найти g, следует знать, чему равно ускорение поступательного перемещения. В пункте выше мы уже показали, как его находить экспериментальным путем из уравнения кинематики. Подставляя формулу для a в равенство для g, имеем:
Вычислив значение g, несложно определить силу тяжести. Например, для первого груза ее величина будет равна:
Определение силы натяжения нити
Сила T натяжения нити является одним из неизвестных параметров системы динамических уравнений. Выпишем еще раз эти уравнения:
Если в каждом равенстве выразить a, и приравнять оба выражения, тогда получим:
T = (m2*F1 + m1*F2)/(m1 + m2).
Подставляя явные значения сил тяжести грузов, приходим к конечной формуле для силы натяжения нити T:
Машина Атвуда имеет не только теоретическую пользу. Так, подъемник (лифт) использует при своей работе контргруз с целью подъема на высоту полезного груза. Такая конструкция значительно облегчает работу двигателя.
Изучение динамики поступательного движения тела с помощью машины Атвуда
Применение машины Атвуда для изучения законов динамики движения тел в поле земного тяготения. Принцип работы механизма. Вывод значения ускорения свободного падения тела из закона динамики для вращательного движения. Расчет погрешности измерений.
Министерство образования РФ
Рязанская государственная радиотехническая академия
Изучение динамики поступательного движения тела с помощью машины Атвуда
Рязань
Цель работы: Изучение динамики поступательного движения тела в поле сил земного тяготения, определение ускорения свободного падения.
Приборы и принадлежности: машина Атвуда со встроенным миллисекундомером, набор грузов и перегрузов.
Машина Атвуда используется для изучения законов динамики движения тел в поле земного тяготения. Принцип работы машины Атвуда таков: если на концах нити висят грузы А и Б одинаковой массы, то система должна находиться в положении безразличного равновесия. Когда на один из грузов (массой М) кладут Масса перегрузка (массой m), то система выходит из положения безразличного равновесия и грузы А и Б начинают двигаться равноускоренно.
Вначале запишем второй закон Ньютона для обоих грузов, предполагая, что нить с блоком не весомы, сила трения мала и нить не растяжима (T1 = T1).
Выразим из данной системы ускорение a.
Проверим равноускоренный характер движения грузов, экспериментально получая значения пути данных грузов S (для обоих грузов он одинаков) и время движения t.
Где ai— экспериментальное ускорение полученное из формулы (3).
Подставляя ai в (2) получаем следующую формулу.
Выразив его из данной системы получим
Лабораторная работа: Изучения прямолинейного движения на машине атвуда
Название: Изучения прямолинейного движения на машине атвуда Раздел: Рефераты по физике Тип: лабораторная работа Добавлен 12:55:38 22 июня 2011 Похожие работы Просмотров: 3892 Комментариев: 18 Оценило: 5 человек Средний балл: 4.8 Оценка: неизвестно Скачать | |
Схема экспериментальной установки на основе машины Атвуда приведена на рис.2.1.
Миллисекундомер 8 представляет собой прибор с цифровой индикацией времени. Регулировочные опоры 9 используют для регулировки положения экспериментальной установки на лабораторном столе.
Принцип работы машины Атвуда заключается в том, что когда на концах нити висят грузы одинаковой массы, то система находится в положении безразличного равновесия. Если на правый груз положить перегрузок, то система грузов выйдет из состояния равновесия и начнет двигаться.
3. ОСНОВНЫЕ РАСЧЕТНЫЕ ФОРМУЛЫ
Средние значения времени и квадрата времени 2 > прохождения грузом с перегрузом пути S:
Абсолютная суммарная погрешность измерения времени прохождения пути S:
(3.3)
Абсолютная случайная погрешность измерения времени прохождения пути S:
стандартная абсолютная погрешность измерения времени:
Абсолютная суммарная погрешность косвенного измерения квадрата времени прохождения пути S:
Абсолютная погрешность косвенного измерения корня квадратного из расстояния:
Угловой коэффициент экспериментальной прямой:
b = (3.8)
Величина ускорения, определяемого из линеаризованного графика:
Абсолютную случайную погрешность ускорения sсл (a ) рассчитываем методом наименьших квадратов.
Рассчитываем параметры линеаризованного графика
(y = f(x) = Ax + B) и случайные абсолютные погрешности параметров.
Расчет производится по формулам: (3.10)
куда входят следующие величины:
где n – число экспериментальных точек.
Абсолютная случайная погрешность определения углового коэффициента: sсл (β ):
где вспомогательная величина:
Абсолютная случайная погрешность ускорения:
4. РЕЗУЛЬТАТЫ РАБОТЫ И ИХ АНАЛИЗ.
Измеренные значения и результаты их обработки приведены в таблице 4.1.
Результаты прямых и косвенных измерений Таблица 4.1
=3,16 см 1/2
= 4,47 см 1/2
= 5,48 см 1/2
= 5,92 см 1/2
=6,48 см 1/2
Изучение прямолинейного движения тел на машине Атвуда
Федеральное Агентство по образованию
ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)
Лабораторная работа по курсу «Общая физика»
ИЗУЧЕНИЕ ПРЯМОЛИНЕЙНОГО ДВИЖЕНИЯ ТЕЛ
Преподаватель Студент группы
___________ /____________. / / ____________ /
___________2010 г. __________ 2010 г.
Целью работы является изучение закона прямолинейного ускоренного движения тел под действием сил земного тяготения с помощью машины Атвуда.
2. ОПИСАНИЕ УСТАНОВКИ И МЕТОДИКИ ЭКСПЕРИМЕНТА
Схема экспериментальной установки на основе машины Атвуда приведена на рис.2.1.
Миллисекундомер 8 представляет собой прибор с цифровой индикацией времени. Регулировочные опоры 9 используют для регулировки положения экспериментальной установки на лабораторном столе.
Принцип работы машины Атвуда заключается в том, что когда на концах нити висят грузы одинаковой массы, то система находится в положении безразличного равновесия. Если на правый груз положить перегрузок, то система грузов выйдет из состояния равновесия и начнет двигаться.
3. ОСНОВНЫЕ РАСЧЕТНЫЕ ФОРМУЛЫ
Среднее значение времени прохождения системой некоторого расстояния S определяется согласно соотношения:
(3.1)
Аналогично для квадрата времени:
(3.2)
Случайная погрешность измерений:
(3.3)
г де – случайная погрешность измерения времени, – случайная погрешность измерения квадрата времени, – коэффициент Стьюдента, – количество значений, – доверительная вероятность, – средняя квадратичная погрешность среднего значения времени, – средняя квадратичная погрешность среднего значения квадрата времени.
Средние квадратические погрешности средней величины:
(3.4)
Согласно теории вероятности, если абсолютная погрешность некоторого измерения больше утроенной среднеквадратической погрешности, тогда такое измерение считается промахом и в дальнейшем исключается из обработки. Таким образом, необходимо чтобы для всех выбранных измерений соблюдалось условие:
(3.5)
Приборная погрешность измерения времени:
(3.6)
где – цена деления секундомера (в данной работе =0,001 с).
Общая погрешность измерений:
(3.7)
Относительная погрешность измерений:
(3.8)
Ускорение движения системы, согласно руководства по лабораторной работе, определим по формуле:
(3.9)
где и значения, определенные с помощью полученного графика линеаризованной зависимости .
Поскольку график зависимости теоретически должен проходить через начало системы координат, тогда для того, чтобы оценить погрешность вычисления ускорения движения системы необходимо для полученных данных найти такие две графические зависимости, для которых их угловой коэффициент (а это и есть, собственно, ускорение) был бы максимальным и минимальным. Большее из отклонений углового коэффициента от рассчитанного значения а и принимается как абсолютная погрешность Δа.
Относительная погрешность определения ускорения движения системы:
(3.10)
4. РЕЗУЛЬТАТЫ РАБОТЫ И ИХ АНАЛИЗ
Измеренные значения и результаты их обработки приведены в таблице.
Таблица 4.1 – Результаты прямых и косвенных измерений
=4, 47 см1/2
Таблица 4.2 – Результаты первичного расчета погрешностей измерений
=4, 47 см1/2
, c
, c2
, c
, c2
, c
, c2
, c
, c2
, c
, c2
, c
, c
, c2
, c2
Поскольку для всех полученных значений выполняется условие (3.5), тогда можно приступать к дальнейшей обработке результатов.
Исходя из того, что для каждого выбранного значения пути перемещения S было выполнено по n =5 измерений, тогда при доверительной вероятности α=0,95 коэффициент Стьюдента будет равен .
Таблица 4.5 – Результаты расчета погрешностей
=4, 47 см1/2
, c
, c
, c
, c
, %
, c2
, c2
, c2
, c2
, %
Как видно из приведенных расчетов в данной лабораторной работе можно пренебречь приборной погрешностью вследствие её малости по сравнению со случайной погрешностью.
Согласно полученным данным построим графики зависимостей , , :
Согласно полученному графику линеаризованной зависимости , пользуясь формулой (3.9), получим:
(см/с2);
Для оценки абсолютной погрешности определения ускорения движения системы, мысленно проведем прямые, проходящие через начало координат системы и каждую экспериментально найденную точку зависимости и вычислим для каждой из них свой угловой коэффициент (3.9):
1) для прямой проходящей через точки (0;0) и (2,307; 3,16) угловой коэффициент равен 3,75 см/с2;
2) для прямой проходящей через точки (0;0) и (2,828; 3,87) угловой коэффициент равен 3,75 см/с2;
3) для прямой проходящей через точки (0;0) и (3,276; 4,47) угловой коэффициент равен 3,72 см/с2;
4) для прямой проходящей через точки (0;0) и (4,006; 5,48) угловой коэффициент равен 3,74 см/с2;
5) для прямой проходящей через точки (0;0) и (4,589; 6,32) угловой коэффициент равен 3,79 см/с2;
1) максимальный угловой коэффициент:
(см/с2);
2) минимальный угловой коэффициент:
(см/с2);
Соответственно получим отклонения:
(см/с2);
(см/с2);
В конечном итоге абсолютная погрешность определения углового ускорения движения системы:
см/с2;
(см/с2);
Относительная погрешность определения ускорения, согласно выражению (3.10):
;
В ходе данной лабораторной работы с помощью машины Атвуда был изучен закон прямолинейного равноускоренного движения тел под действием сил земного тяготения. В результате проведенных испытаний удалось получить графики зависимости перемещения от времени , перемещения от квадрата времени , корня квадратного от времени . Также в ходе выполнения работы было рассчитано ускорение движения системы (см/с2) с относительной погрешностью , что является отличным результатом. В заключение необходимо сказать, что поставленная цель работы была достигнута полностью, на что указывают относительные погрешности определения времени движения системы для различных перемещений (все менее 5%), а также допустимая точность определения искомого ускорения движения 2,4%.
6. ОТВЕТЫ НА КОНТРОЛЬНЫЕ ВОПРОСЫ
1. Какие силы действуют на груз с перегрузком во время движения?
На груз с перегрузком во время движения действуют сила земного тяготения и сила натяжения нити. Действием всех остальных сил в данной работе пренебрегаем (силы трения, сопротивления воздуха и т. д.)
2. Запишите уравнение движения для каждого из грузов.
Уравнение движения груза с перегрузком:
;
Уравнение движения груза без перегрузка:
;
где – масса каждого груза без перегрузка, – масса перегрузка, – ускорение свободного падения, и – силы натяжения нитей на грузе с перегрузком и грузе без перегрузка соответственно, и – ускорения движения грузов с перегрузком и без соответственно.
В силу не растяжимости нити ; при невесомом блоке .
3. Укажите возможные причины, обуславливающие несовпадение теоретических выводов с результатами измерений.
Среди причин, обуславливающих несовпадение теоретических выводов с результатами измерений можно назвать такие как: пренебрежение весом блока, пренебрежение силами трения и сопротивления в системе, пренебрежение весом, физическими и геометрическими свойствами нити, а также, что естественно, определенную погрешность вносят погрешности измерения всех величин.
4. Каким образом из линеаризованного графика можно оценить систематическую погрешность измерения времени?
5. Укажите физические допущения, используемые при теоретическом анализе движения грузов в машине Атвуда.
При теоретическом анализе движения грузов в машине Атвуда считается, что блок и нить невесомы, нить нерастяжима, силы трения малы; в силу чего допускается, что ускорение движения грузов и силы натяжения нити по разные стороны блока одинаковы.
К работе прилагается регистрационный файл (*. REG ).