Испаритель бензина для автомобиля своими руками

Испаритель бензина для автомобиля своими руками

Возможные пути уменьшения эксплуатационного расхода топлива на бензиновых двигателях изучались в СССР еще в 1950—1960-е годы. Например, Д.Н. Иванов впервые применил отработавшие газы двигателя автомобиля ЗИС-5 для нагрева впускного тракта. Он экспериментально и теоретически доказал, что использование теплоты этих газов позволяет не только добиться экономии топлива в 22—27 %, но и повысить мощность двигателя за счет лучшего качества приготовления топливовоздушной смеси. Его эстафету принял Ю.Б. Свиридов, который в начале 1960-х годов работал в НАМИ, а затем продолжил начатые здесь исследования в ЦНИТА (Ленинград). Именно он стал известен как создатель обобщенной теории смесеобразования и сгорания в дизеле. Эти два человека определили целое направление в системах топливоподачи бензинового двигателя.

Основная идея данного направления — использование отработавших газов для испарения топлива. Она реализовывалась в так называемых пленочно-испарительных системах топливоподачи.

В своих трудах Д.Н. Иванов и Ю.Б. Свиридов связывали обеспечение высоких требований по экономичности и токсичности отработавших газов автомобильного двигателя с решением двух проблем — качества приготовления топливо-воздушной смеси (микросмешивание) и точности дозирования топлива по цилиндрам от цикла к циклу (макросмешивание). В частности, в 1977 г. Ю.Б. Свиридов отмечал, что вторая из них должна решаться и решается путем создания аппаратуры впрыскивания топлива, управляемой компьютером. Первая же проблема, гомогенизации топливовоздушного заряда на всех режимах двигателя, по существу им не рассматривалась. Он, как и Д.Н. Иванов, считал: попытки совершенствования смесеобразования за счет улучшения распыливания топлива в низкотемпературных условиях впускного тракта эту проблему решить не могут. Даже при некотором подогреве смеси. Другими словами, никакая топливная форсунка или карбюратор не могут дробить топливо до состояния пара. То есть ни форсунка, ни карбюратор создать гомогенную топливовоздушную смесь во впускном тракте двигателя и в цилиндре не могут: в потоке всегда будут капли топлива или пристеночная пленка, что неминуемо ухудшит рабочий процесс.

Как видим, оба исследователя очень ясно понимали, что на пути повышения экономичности двигателей лежит нежелательный, но всегда сопутствующий всякому распылению топлива эффект — пленкообразование и мелкие капли. Поэтому Ю.Б. Свиридов посвятил часть своей научной деятельности созданию пленочно-испарительных систем, которые, по его мнению, должны способствовать устранению того и другого. Так, он впервые применил принцип противотока в таких системах (распространение теплоты в испарителе навстречу движению пленки топлива), который гарантированно исключал разложение топлива, а процесс его испарения автоматически проходил в зоне оптимальных температур. Рассчитал он и длину испарителя, толщину его стенок, определил материал испарителя, лучше всего подходящий для этих целей, и многое другое. Тем не менее пленочно-испарительные системы до сих пор не применяются. Возникает вопрос: почему? Потому что, как это нередко случается в научной деятельности, результаты экспериментально-лабораторных исследований не дали ожидаемого практического результата.

Автор письма в редакцию «АП» прав. Действительно, Ю.Б. Свиридов по заказу ВАЗа провел испытания своей пленочно-испарительной системы на серийном двигателе этого завода. И оказалось, что расход топлива остается фактически тем же, что и при серийном карбюраторе. В итоге всякая работа по системам испарения была прекращена.

Этому в определенной степени способствовало и то, что тогда же был проведен эксперимент с целью выяснения, возможно ли вообще повысить экономичность двигателя, если подавать в него заранее и заведомо испаренное топливо. Было установлено: экономия топлива при этом не превышает 3—5 %.

Так окончательно сформировалось мнение: «бумажные» расчеты, показывающие, что КПД бензинового двигателя можно значительно повысить, не могут быть реализованы на практике. Между тем Ю.Б. Свиридов ошибался не в своих теоретических выводах, а в объяснении результатов экспериментов. Дело в том, что испарить топливо — это лишь необходимое условие работы пленочно-испарительной системы. Но, к сожалению, условие недостаточное. Поскольку обеспечивает лишь одну сторону процесса смесеобразования. Ведь хорошо известно, что параллельно испарению идет встречный процесс — конденсация топлива. Особенно тяжелых его фракций, имеющих температуры разгонки 400- 460 К (130-190 °С). Вот что об этом говорит теория.

Нулевое начало термодинамики гласит: «Температура как функция состояния есть равенство температур во всех точках как условие равновесия двух систем или двух частей одной и той же системы». Для пленочно-испарительной системы — это пары топлива и воздух. С другой стороны, согласно первому началу термодинамики изолированная система, т. е. система, не обменивающаяся с окружающей средой ни энергией, ни веществом, подчиняется закону сохранения энергии. В нашем случае под внутренней энергией системы «пары топлива—воздух» понимается энергия хаотического (теплового) движения всех микроскопических систем (молекул, атомов и т. д.). Исходя из этих законов, всякая замкнутая система стремится к термодинамическому равновесию, а ее внутренняя энергия остается постоянной.

Далее. Из результатов многочисленных теоретических и экспериментальных исследований известно, что при таких перепадах температур, как в пленочно-испарительных системах, термодинамическое равновесие между парами топлива и воздухом в спокойной среде наступает за 100 мс (0,1 с). В турбулентной среде, как в случае ДВС, процесс ускоряется в 2—2,5 раза, т. е. время выравнивания температур не превышает 50 мс (0,05 с). Если это время сравнить с временем, отводимым на процессы смесеобразования и сжатия в двигателе (0,2—0,02 с), то становится ясно, что температурные поля полностью выравниваются еще до момента воспламенения топливовоздушной смеси в камере сгорания двигателя. (Это утверждение вытекает из тех же термодинамических представлений. Если время, отводимое системе, больше или равно времени релаксации, то можно утверждать, что система будет находиться в термодинамическом равновесии.) Кроме того, испарение топлива, будь то в пленочно-испарительной системе или при барботажном испарении, идет в замкнутой системе или подается в замкнутую систему («впускной тракт—цилиндр»). Поэтому за счет диффузионных процессов параллельно развивается, как сказано выше, конденсация паров топлива. Дело в том, что при испарении жидкости в закрытом пространстве пар становится насыщенным, т. е. находится в тепловом равновесии с испаряемой жидкостью. (При фракционировании бензина картина усложняется, но результат не меняется.) В момент же смешивания паров топлива с более холодным воздухом первые снижают свою температуру до температур конденсации. В итоге во впускном тракте и особенно в цилиндре двигателя сами молекулы оказываются центрами конденсации. А с учетом того, что впускной тракт и цилиндр не являются идеальной замкнутой системой, то процесс конденсации ускоряется, и пары топлива, конденсируясь в объеме, осаждаются на стенках.

Именно двойственность процесса (с одной стороны — испарение, с другой — конденсация) не позволяет качественно улучшить смесеобразование в бензиновом двигателе. И, следовательно, его топливную экономичность. С чем, собственно, и столкнулся Ю.Б. Свиридов (и не только он) при экспериментах с двигателями ВАЗ: он не сумел исключить процесс конденсации топлива даже подогревом впускного коллектора.

Между тем задача разрешима. Нужно выполнить лишь два условия. Во-первых, уменьшить количество чистого воздуха, проходящего по испарителю; во-вторых, создать в испарителе участок перегрева паровоздушной смеси (использовать принцип перегретого пара).

Условия очевидные. Первое резко снижает количество теплоты (энергии), отдаваемое испаренным топливом чистому воздуху в испарителе; второе позволяет не сконденсироваться ни одной из фракций топлива, в том числе самым тяжелым, за время смесеобразования и сжатия в камере сгорания двигателя.

Выполнить названные условия несложно. Для этого в штатную систему питания серийного двигателя необходимо ввести дополнительный испарительный тракт, работающий по принципу пленочно-испарительной системы и установленный параллельно основному впускному тракту. Этот тракт на одном конце должен иметь воздушную заслонку небольшого диаметра, которая работает синхронно с дроссельной, а на втором — разветвления по числу цилиндров двигателя, проложенные по выпускному коллектору точно так, как предлагал в своей системе противотока Ю.Б. Свиридов.

Такое разделение на тракты чистого воздуха и испарительный с перегревом паров позволяет эффективно решать и другие задачи: не нагревать основную часть воздуха, подаваемого в цилиндры двигателя, а значит, исключить влияние нагрева на коэффициент наполнения цилиндров и на детонационные процессы в них; за счет меньшего количества воздуха в дополнительном испарительном тракте устранить явления срыва капель с поверхности пленки, возникающие при больших скоростях потока; быстрее, еще до полного прогрева двигателя выходить на расчетные значения расхода топлива. Но самое главное — на режимах холостого хода и малых нагрузок экономить до 30, в движении — до 20—25 % топлива. При этом выбросы монооксида углерода, углеводородов и оксидов азота оказываются меньше самых жестких стандартов.

Источник

Испаритель топлива

Полезная модель относится к области машиностроения и энергетики, а конкретно к испарителям топлива, которые предназначены для горелочных устройств, используемых в автономных отопительных системах, преимущественно автомобильных, а также в иных устройствах, использующих как источник тепловой энергии процесс сжигания жидкого углеводородного топлива, преимущественно нефтяного, а именно дизельного топлива, бензина и тому подобное.

При использовании известного испарителя топлива происходит его постепенное закоксовывание, что приводит к значительному сокращению срока службы, особенно при использовании низкосортных топлив. Выход из строя испарителя топлива приводит к отказу в работе автономной отопительной системы.

Технический результат настоящей полезной модели заключается в повышении срока службы испарителя топлива за счет уменьшения степени закоксовывания, в том числе при использовании низкосортных топлив, и, как следствие, к повышению ресурса горелочного устройства и автономной отопительной системы в целом, в увеличении мощности автономной отопительной системы, надежности, а также в упрощении обслуживания и снижении стоимости ремонта автономной отопительной системы.

Корпус испарителя топлива может быть выполнен с диаметром 38 мм, высотой 3 мм и весом 15 г.

Корпус испарителя топлива может быть выполнен с продольным отверстием для продувки воздухом. При этом корпус может иметь диаметр 33 мм, высоту 3 мм и вес 10 г.

Корпус испарителя топлива может быть выполнен продольным отверстием для продувки воздухом и отверстием для запала, расположенными эксцентрично. При этом корпус может также иметь диаметр 33 мм, высоту 3 мм и вес 10 г.

В наилучшем варианте осуществления полезной модели во всех перечисленных выше видах корпус может быть спрессован из отрезков нихромовой проволоки с предварительно нарушенной линейностью.

Также в наилучшем варианте осуществления полезной модели во всех перечисленных выше видах корпус может быть спрессован из отрезков нихромовой проволоки с длиной 1 м.

Предпочтительно изготовление корпуса из отрезков нихромовой проволоки из сплава марки Х20Н80 (ГОСТ 10994-74).

Благодаря указанным особенностям изготовленный в соответствии с настоящей полезной моделью испаритель топлива позволяет повысить ресурс горелочного устройства, увеличить мощности автономной отопительной системы и ее надежность, снижается стоимость ремонта автономной отопительной системы.

Корпус 1 показанного на фиг.1 испарителя топлива имеет диаметр 38 мм, высоту 3 мм и весит 15 г. Он изготовлен из 150 отрезков длиной 1 м нихромовой проволоки диаметром 0,1 мм.

Корпус 2 показанного на фиг.2 испарителя топлива имеет диаметр 33 мм, высоту 3 мм и вес 10 г. Он изготовлен из 100 отрезков длиной 1 м нихромовой проволоки диаметром 0,1 мм. Ось отверстия 3 для продувки воздухом, которое имеет диаметр 7 мм, расположена на расстоянии 6,5 мм от края корпуса 2.

Корпус 4 показанного на фиг.3 испарителя топлива имеет диаметр 33 мм, высоту 3 мм и вес 10 г. Он также изготовлен из 100 отрезков длиной 1 м нихромовой проволоки диаметром 0,1 мм. Ось отверстия 5 для продувки воздухом здесь также имеет диаметр 7 мм и расположено оно на расстоянии 6,5 мм от края корпуса 4. Отверстие 6 для запала имеет диаметр 3 мм и расположено осью на расстоянии 8 мм от оси отверстия 5, причем оба отверстии 5 и 6 расположены с касанием со стороны оси корпуса 4 прямой, параллельной касательной к корпусу 4 в точке 7 пересечения края корпуса 4 и радиуса, на котором расположена ось отверстия 5 для продувки воздухом.

При изготовлении предварительно нарушается линейность нихромой проволоки. Это делает либо вручную, периодическим смятием мотка проволоки некоторое время. Либо с использованием ручного пресса с сопрягаемыми плавно криволинейными выпуклыми поверхностями, между которыми неоднократно зажимается моток проволоки с изменением его положения между каждыми зажатиями. Эта операция приводит к утрате проволокой упругости.

Затем от мотка проволоки отрезаются отрезки длиной в 1 м, которые с хаотичным расположением линий отрезков укладываются равномерно в объем полости матрицы. Полость матрицы имеет конфигурацию, соответствующую конфигурации изготавливаемого корпуса (1, 2, 4) испарителя топлива.

Затем осуществляется прессование под давлением 5 атм. с ограничением сжатия спрессовываемого материала по высоте на величину, соответствующую высоте изготавливаемого корпуса (1, 2, 4) испарителя топлива, чем исключается возможность избыточного сжатия изготавливаемого испарителя топлива.

2. Испаритель топлива по п.1, отличающийся тем, что корпус выполнен с продольным отверстием для продувки воздухом.

3. Испаритель топлива по п.1, отличающийся тем, что корпус выполнен с продольным отверстием для продувки воздухом и отверстием для запала, расположенными эксцентрично.

4. Испаритель топлива по п.1, отличающийся тем, что корпус выполнен с диаметром 38 мм, высотой 3 мм и весом 15 г.

5. Испаритель топлива по п.2, отличающийся тем, что корпус выполнен с диаметром 33 мм, высотой 3 мм и весом 10 г.

6. Испаритель топлива по п.3, отличающийся тем, что корпус выполнен с диаметром 33 мм и высотой 3 мм и весом 10 г.

7. Испаритель топлива по пп.1-5 или 6, отличающийся тем, что корпус спрессован из отрезков нихромовой проволоки с предварительно нарушенной линейностью.

8. Испаритель топлива по пп.1-5 или 6, отличающийся тем, что корпус спрессован из отрезков нихромовой проволоки с длиной 1 м.

9. Испаритель топлива по пп.1-5 или 6, отличающийся тем, что использована проволока из сплава марки Х20Н80.

Источник

Способ работы испарителя топлива и испаритель топлива двигателя внутреннего сгорания (варианты)

Использование: устройства для подготовки и подачи топлива в двигатель внутреннего сгорания и способ их работы. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство. Для разделения на фракции топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Отработавшие газы двигателя внутреннего сгорания используют для подогрева теплоносителя. Раскрыты два варианта выполнения испарителя топлива. Технический результат: снижение расхода топлива. 3 с.п.ф-лы, 2 ил.

Изобретение относится к машиностроению, а именно к двигателестроению, в частности к устройствам для подготовки и подачи топлива в двигатель внутреннего сгорания (ДВС) и способам их работы.

Известен способ работы тепловой трубы путем подачи тепла от внешнего источника к зоне испарения тепловой трубы для нагрева теплоносителя до температуры кипения (испарения), тепломассопереноса по зоне трансформирования тепловой трубы, конденсирования паров теплоносителя в зоне конденсации тепловой трубы и возврата теплоносителя в зону испарения. При этом зону конденсации тепловой трубы, оснащенную ребрами, нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00).

Основным недостатком описанного способа работы тепловой трубы является необходимость использования подвода теплоты от внешнего источника.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ работы испарителя топлива ДВС путем подачи топлива в зону испарения. Топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель. Для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания (см. патент РФ N 2002096, МПК F 02 M 31/087).

Основным недостатком способа работы испарителя топлива является повышенный расход топлива вследствие малой площади испарения капиллярно-пористой структурой.

Известна тепловая труба с испарительным, транспортным и конденсационным участками теплоносителя. Испарительный уча сток связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00).

Основным недостатком этой тепловой трубы является пониженная теплоотдача вследствие выполнения конденсационного участка с полыми ребрами, что приводит к скоплению в них конденсата.

Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружными стенками, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, патрубок регулирования подачи топлива, связанный с патрубком отвода газообразной фракции, подключенным к испарительному устройству, и с механизмом регулирования подачи топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Механизм регулирования подачи топлива выполнен в виде сильфона, связанного с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл 4 F 23 D 5/04).

Основным недостатком описанной испарительной горелки является повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой.

Известна тепловая труба с испарительным транспортным и конденсационным участками теплоносителя. Испарительный участок связан с внешним источником теплоты. Конденсационный участок снабжен полыми ребрами (см. авторское свидетельство СССР N 951059, М.кл. F 28 D 15/00) Основными недостатками этой тепловой трубы являются большие затраты времени на испарение теплоносителя, так как испарительный участок функционирует в стационарном режиме, а также отсутствие возможности регулирования теплоотдачи.

Наиболее близкой по технической сущности и достигаемому результату к предлагаемому изобретению (прототипом) является испарительная горелка, содержащая испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное в верхней части испарительной камеры, патрубок отвода газообразной фракции топлива, соединенный с верхней частью испарительного устройства и соплами для подачи испаренного топлива, патрубок отвода жидкой фракции топлива, соединенный с нижней частью испарительного устройства и соплами для подачи жидкого топлива, систему подачи топлива, подсоединенную к испарительному устройству посредством змеевика. Патрубок отвода газообразной фракции подключен к сильфону, связанному с подпружиненным рычагом и регулировочным винтом. Подпружиненный рычаг в свою очередь прикреплен к смесительной головке. Над смесительной головкой друг над другом установлены перфорированные конусы с буртиками. Сопла для подачи жидкого топлива размещены над конусами. Испарительное устройство выполнено в виде разделительной емкости с размещенными внутри сепарационной вставкой и поплавковым клапаном. Нагрев термосифона осуществляется от тепла горелки (см. авторское свидетельство СССР N 1464011, М.кл 4 F 23 D 5/04).

Основными недостатками описанной испарительной горелки являются повышенный расход топлива вследствие поступления его жидкой фракции в зону горения, так как испарительное устройство выполнено в виде разделительной емкости с сепарационной вставкой, и отсутствие регулировки подачи топлива, так как использование сильфона для регулирования теплоотдачи способствует инерционности работы испарительной горелки.

Сущность изобретения заключается в том, что в способе работы испарителя топлива ДВС путем подачи топлива в зону испарения, причем топливо нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель, для подогрева теплоносителя используют отработавшие газы двигателя внутреннего сгорания, а топливо подают в зону испарения для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство.

Сущность изобретения заключается так же в том, что в испарителе топлива ДВС, содержащем испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающей частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке. При этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива.

Техническим результатом является снижение расхода топлива.

Снижение расхода топлива обеспечивается за счет расширения площади испарения пористой структурой металлокерамического блока и введением в испарители топлива ДВС устройства для подвода отработавших газов к испарительной камере.

Соединение патрубка отвода жидкой фракции топлива с системой подачи топлива устраняет возможность поступления жидкой фракции топлива в камеру сгорания ДВС, что обеспечивает экономичную работу ДВС.

Выполнение испарительного устройства с возможностью вращения вокруг своей оси обеспечивает небольшие затраты времени на испарение топлива.

Выполнение патрубка регулирования подачи топлива в виде трубчатых элементов, связанных с секциями пористого металлокерамического блока, при соединении механизма регулирования подачи топлива с акселератором и дроссельной заслонкой, в одной предлагаемой конструкции испарителя топлива ДВС, и выполнение испарительного устройства с возможностью вращения вокруг своей оси с обеспечением возможности изменения угловой скорости вращения в другой предлагаемой конструкции испарителя топлива ДВС позволит изменять подачу топлива внутрь испарительного устройства.

Испаритель топлива ДВС (см. фиг. 1) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 размещено испарительное устройство 5 с наружными стенками 6, выполненное в виде секционного пористого металлокерамического блока, изготовленного, например, по технологии самораспространяющегося высокотемпературного синтеза. С испарительным устройством 5 соединены патрубок 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны), патрубок 8 отвода жидкой фракции топлива, подключенный к топливному баку 9, и патрубок 10 регулирования подачи топлива, связанный с механизмом 11 регулирования подачи топлива. Патрубок 10 регулирования подачи топлива выполнен в виде трубчатых элементов, соединенных с секциями пористого металлокерамического блока. Механизм 11 регулирования подачи топлива выполнен в виде крана, например, трехходового, подключенного связью управления 12, например механической, к дроссельной заслонке 13, размещенной в патрубке 7 отвода газообразной фракции топлива, а также подсоединенного, например, механической связью, к педали акселератора (на чертеже не показаны).

Система подачи топлива содержит топливный бак 9, соединенный с насосом 14, ресивером 15 и механизмом 11 регулирования подачи топлива трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол.

Трубопровод 18 предназначен для подачи топлива от механизма 11 регулирования подачи топлива через патрубок 10, выполненный в виде трубчатых элементов, к секциям пористого металлокерамического блока испарительного устройства 5.

Кроме этого, испаритель топлива ДВС снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4.

Испаритель топлива ДВС (см. фиг. 2) содержит испарительную камеру 1, выполненную в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, например воды. Внутри испарительной камеры 1 осесимметрично ей размещено испарительное устройство 5 с наружной стенкой 6, выполненное в виде конической пористой металлокерамической трубы, изготовленной, например, по технологии самораспространяющегося высокотемпературного синтеза. Коническая пористая металлокерамическая труба установлена коаксиально наружной стенке 6 и соединена сужающейся частью с патрубком 7 отвода газообразной фракции топлива в цилиндры ДВС (на чертеже не показаны). Патрубок 8 отвода жидкой фракции топлива подключен к топливному баку 9 и к испарительному устройству 5.

Система подачи топлива содержит топливный бак 9, соединенный с насосом 14 и ресивером 15 трубопроводами 16 и 17 соответственно, а также связанный с испарительным устройством 5 патрубком 8 отвода жидкой фракции топлива. В качестве топлива может быть использован метанол.

Испаритель топлива ДВС также снабжен устройством 19 для подвода отработавших газов ДВС к испарительной камере 1, нагревающим теплоноситель 4.

Испарительное устройство 5 выполнено с возможностью вращения вокруг своей оси в подшипниках 20 посредством двигателя, например электродвигателя (на чертеже не показан), связанного со шкивом 21. Изготовление пористой металлокерамической трубы конической формы позволяет равномерно по длине распределить поступающее топливо. При этом количество топлива будет возрастать пропорционально увеличению оборотов вращения трубы.

Способ работы испарителя топлива осуществляется следующим образом. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя из жидкого в газообразное состояние, подогревая теплоноситель в испарительной камере до температуры парообразования. Для подогрева теплоносителя используют отработавшие газы ДВС. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства. Таким образом, топливо нагревают до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя вследствие того, что пар теплоносителя конденсируется на наружных стенках испарительного устройства, отдавая теплоту фазового перехода топливу. Далее газообразную фракцию топлива подают в цилиндры ДВС, а неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону.

Примеры конкретного выполнения способа.

Способ работы испарителя топлива с испарительным устройством в виде секционного пористого металлокерамического блока и системой регулирования подачи топлива реализуется следующим образом (см. фиг. 1). Топливо подают в зону испарения, образованную испарительным устройством 1, выполненным в виде секционного пористого металлокерамического блока, из топливного бака 9 посредствам насоса 14, ресивера 15, трубопроводов 16 и 17, через механизм 11 регулирования подачи топлива в зависимости от положения педали акселератора посредством связи управления 12, трубопровод 18 и патрубок 10, выполненный в виде трубчатых элементов. В зону испарения топливо подают для разделения на газообразную и жидкую фракции из слоев пористой структуры металлокерамического блока, представляющего собой испарительное устройство 5. Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя, посредством устройства 19 для подвода отработавших газов к испарительной камере. Испарение нагретого топлива осуществляется в зоне испарения из слоев пористой структуры испарительного устройства 5.

Далее газообразную фракцию топлива подают патрубком 7 в цилиндры ДВС, минуя дроссельную заслонку 13. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9, систему подачи топлива и механизм 11 регулирования подачи топлива.

Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода.

Способ работы испарителя топлива с испарительным устройством в виде вращающейся конической пористой металлокерамической трубы (см. фиг. 2) реализуется следующим образом. Топливо подают в зону испарения, образованную испарительным устройством 1, осесимметрично размещенным внутри испарительной камеры 1 с возможностью вращения вокруг своей оси, выполненным в виде конической пористой металлокерамической трубы, из топливного бака 9 посредством насоса 14, ресивера 15, трубопроводов 16 и 17. При этом осуществляют равномерное распределение топлива в объеме пористой структуры испарительного устройства 5 вследствие вращения этого устройства в подшипниках 20. Топливо подают в зону испарения для разделения на газообразную и жидкую фракции из объема пористой структуры конической металлокерамической трубы, представляющей собой испарительную камеру 5.

Топливо для разделения на фракции нагревают энергией фазового перехода теплоносителя 4 из жидкого в газообразное состояние, подогревая теплоноситель 4 в испарительной камере 1 до температуры парообразования. Для подогрева теплоносителя 4 используют отработавшие газы ДВС, поступающие к испарительной камере 1, выполненной в виде двухфазного термосифона с паровым 2 и конденсационным 3 участками теплоносителя 4, посредством устройства 19 для подвода отработавших газов к испарительной камере. Таким образом нагрев жидкой фазы теплоносителя 4, расположенной на внутренней поверхности испарительной камеры 1 за счет центробежных сил, осуществляют путем утилизации остаточной энергии отработавших газов ДВС, поступающих внутри устройства 19. Испарение нагретого топлива производится в зоне испарения из слоев пористой структуры испарительного устройства 5.

Далее газообразную фракцию топлива подают из сужающейся части испари тельного устройства 5 патрубком 7 в цилиндры ДВС. Неиспарившуюся часть жидкой фракции топлива после его подачи в зону испарения возвращают в эту зону через патрубок 8, соединенный с топливным баком 9 и систему подачи топлива. Таким образом, нагрев топлива, например метанола, до температуры выше конечной температуры испарения (парообразования) газообразной фазой теплоносителя 4 осуществляют за счет того, что пар теплоносителя 4, нагретого отработавшими газами ДВС, конденсируется на наружных стенках 6 испарительного устройства 5, отдавая топливу теплоту фазового перехода.

Предлагаемый способ работы испарителя топлива ДВС и испарители топлива ДВС, реализующие этот способ, позволяют снизить расход топлива, обеспечить низкую токсичность отработавших газов вследствие качественного смесеобразования топливовоздушной смеси для питания ДВС, а также эффективность испарения топлива. Ыр

3. Испаритель топлива двигателя внутреннего сгорания, содержащий испарительную камеру, выполненную в виде термосифона с паровым и конденсационным участками теплоносителя, испарительное устройство с наружной стенкой, размещенное внутри этой камеры, патрубки отвода газообразной и жидкой фракций топлива, соединенные с испарительным устройством, систему подачи топлива, подключенную к испарительному устройству, отличающийся тем, что испарительное устройство, осесимметрично размещенное внутри испарительной камеры с возможностью вращения вокруг своей оси, выполнено в виде конической пористой металлокерамической трубы, соединенной сужающейся частью с патрубком отвода газообразной фракции топлива и установленной коаксиально наружной стенке, при этом испаритель топлива дополнительно снабжен устройством для подвода отработавших газов к испарительной камере, а система подачи топлива подключена к испарительному устройству патрубком отвода жидкой фракции топлива.

NF4A Восстановление действия патента Российской Федерации на изобретение

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто