Практическая методика настройки карбюраторов мотоцикла Урал
У меня есть мотоцикл Урал М8-103-10, выпуска 1989г. Отъездил я на нем, непрерывно, 9 лет.
Было перевезено множество стройматериалов и урожая с садового участка и огорода (везет до 10 мешков картошки за одну «ходку», но удобнее возить по 5-6).
Потом, в 2001-м, была приобретена 9-ка и поэтому, на Урале стал ездить периодически — в основном, возил крупногабаритные грузы, картошку, мусор, изредка — на рыбалку (Урал — тот еще «проходимец» 🙂 ). Несколько лет не ездил совсем (на машине — комфортнее, и гараж у нее — рядом 🙂 ) — сдал номер в ГИБДД и мотоцикл стоял в гараже (для Урала у меня — отдельный гараж, в получасе ходьбы от дома). Потом подрос младший сын, сдал на права и последние два года мотоцикл опять был в эксплуатации (забрал в ГИБДД номер, прошел техосмотр и т.д.). Сейчас сын — в армии, поэтому Урал снова его дожидается, стоя в гараже.
В 90-е годы Уралов у нас в городе было много. Многие мои знакомые также начинали свою водительскую «карьеру» с Уралов. Мотоцикл у меня всегда в идеальном состоянии (как и машины). Вот на нем я и научился достаточно качественно настраивать карбюраторы. В 90-е годы настраивал карбюраторы не только на своем Урале (у меня стоят К-63Т, с «флажками»), но и на Уралах многих моих знакомых и даже не знакомых (за денежку, хоть и не большую, но в семейном бюджете полезную 🙂 ). Есть в этом процессе некоторые тонкости, которые не описаны в инструкциях. Да и сам процесс можно слегка изменить, с сохранением конечного результата 🙂
Причем, все «положения» справедливы практически для всех модификаций карбюраторов (К-62, К-63, К-65, К-68 и т.д.)
Стандартная инструкция (тоже на все типы карбов) описывает процесс настройки примерно так:
soviet-moto.3dn.ru/load/k…urator_ural_dnepr/3-1-0-3
Из нее нам нужно усвоить главную мысль: на карбюраторе два винта — винт «качества» и винт «количества».
Самое важное (и сложное) — правильно настроить винт «качества».
1. Перед настройкой карбюраторов нужно обязательно проверить все остальные сопутствующие настройки двигателя — состояние свечей, бензокраника, контактов прерывателя, катушки зажигания. Настроить (проверить) угол опережения зажигания.
Угол опережения зажигания выставляется по стандартной методике.
а. Выставляем маховик двигателя по метке.
— открываем резиновую заглушку на картере (становится видна поверхность маховика) и небольшими толчками рычага кик стартера медленно поворачиваем маховик до появления в отверстии риски на маховике и ее совмещения с риской на картере (весьма кропотливая процедура).
б. Контакты прерывателя замкнуты (если разомкнуты — ослабить винты крепления прерывателя к картеру, и повернуть прерыватель до замыкания контактов), аккумулятор подключен, ключик 6х8 — к торцу катушки зажигания (при исправной катушке ключик должен примагнититься). Корпус прерывателя, ослабив крепежные винты, очень медленно (по миллиметру) поворачиваем, «по ходу» (направление вращения вала мы видели, когда выставляли маховик), до момента размыкания контактов (ключик падает). В этом положении затягиваем крепежные винты корпуса прерывателя.
в. Воздух должен быть открыт полностью. Богатая смесь может получаться не только из-за неверной настройки карбюратора, но и при недостатке воздуха. Недостаток воздуха бывает при пережиме резиновых воздушных патрубков, а также, при сильной засоренности воздушного фильтра. Еще нужно проверить поплавки в карбюраторах, чтобы они были именно поплавками, т.е. были герметичны. Если в поплавках есть бензин — заменить поплавки.
2. Настройка карбюраторов, на первом этапе, выполняется на каждом из цилиндров отдельно.
Предварительно, стоит выставить винт «количества» примерно в среднее положение. Винт «качества» — как в инструкции — 1 оборот от полностью закрученного состояния. Колпачок свечи второго цилиндра — замкнут на массу. Для этого, между ребрами цилиндра вставляется какая-нибудь железка (винт, гвоздь, небольшой ключик, металлическая отвертка и т.п.) и на нее надевается колпачок свечи нерабочего цилиндра (нужно замкнуть на массу центральный контакт внутри колпачка).
— Заводим двигатель на одном цилиндре. Если не заводится или сразу глохнет — пробуем слегка выкрутить винт «количества» с целью увеличения количества поступающего топлива. Нужно просто получить более-менее устойчивую работу двигателя, пока на любых оборотах. После этого — начинаем регулировку.
— Регулировка заключается в поиске правильного положения винта «качества». Это положение, для каждого конкретного карбюратора — только одно. Поэтому, винт «качества» настраивается только один раз и в дальнейшем его вообще регулировать не нужно (я на своем Урале его не регулирую уже лет 10 🙂 ). В этом положении число оборотов двигателя — максимально (положение «максимума»). Т.е. если из этого положения начать закручивать или выкручивать этот винт, обороты будут только падать. Однако, этот «максимум» получается только при определенном положении винта «количества». Вот именно тут, как говорится, «собака порылась». В инструкциях предлагается просто пару раз выполнить настройку. Но, этого, зачастую, недостаточно. Я применяю примерно такую методу:
— После заводки, винтом «количества» выставляю минимальные устойчивые обороты двигателя.
— Вращением винта «качества» проверяю наличие «максимума». Если «максимум» найден, то регулировка удалась и винт «качества» фиксируется в положении этого максимума. Если нет, приходится изменить положение винта «количества», и уже в этом положении искать максимум оборотов винтом «качества». В общем, методом итераций, ищем положение винта «количества», при котором появляется явный «максимум» на винте «качества», куда этот винт и выставляем. По опыту, на разных карбюраторах, это положение варьируется в районе среднего положения винта «качества» (от 1/4 до 3/4 его длины). Но, для каждого карбюратора положение свое, уникальное.
3. Выставив на обоих карбюраторах винты «качества» приступаем к дальнейшей настройке. Уже при работе обоих цилиндров настраиваем обороты холостого хода. Задача — получить минимальные устойчивые обороты двигателя на холостом ходу. Для этого, нужно синхронизировать настройки холостого хода обеих карбюраторов. Здесь есть еще один секрет. Дело в том, что частота оборотов двигателя больше зависит от того карбюратора, в который подается больше топлива. А нам нужно настроить карбюраторы так, чтобы оба цилиндра работали на одной частоте вращения. Метода простая:
Крутим, поочередно, винты «количества» карбюраторов. Я это делаю, сидя на мотоцикле, двумя руками, одновременно на обоих карбюраторах — винты «количества», чаще всего, можно крутить «от руки». Начинаю закручивать один из винтов. При этом, если обороты определялись именно этим карбюратором, то они начнут падать. Если не падают — крутим винт второго карбюратора. Винт крутится до того момента, пока не прекратится дальнейшее падение оборотов (при этом количество топлива из другого карбюратора станет больше). Нужно найти такое положение винтов, при котором двигатель работает на минимальных устойчивых оборотах, а откручивание любого из винтов, даже на небольшую величину, вызывает повышение оборотов двигателя, т.е. оба карбюратора у нас настроены одинаково.
Частота оборотов холостого хода зависит от степени прогрева двигателя. На холодном двигателе частота — ниже. При нагреве — растет. Я, по этому поводу не парюсь — перед заводкой оба винта «количества» примерно на половину оборота выкручиваю (карбы настроены одинаково, поэтому можно просто выкрутить винты на одинаковое число оборотов). После прогрева — слегка снижаю обороты этими же винтами, заодно проверяя синхронность карбюраторов на холостом ходу. Как вариант, чтобы не крутить винты, заводим слегка повернув рукоятку газа и поддерживаем обороты, пока двигатель слегка не прогреется, и не начнет устойчиво работать на холостых.
4. Настраиваем синхронность работы карбюраторов от рукоятки газа. Здесь у меня еще одно «отступление» от стандартной инструкции 🙂 Что мы имеем изначально? Два одинаковых карбюратора, с идентичной механической конструкцией, одинаково настроенные на холостом ходу, у которых степень открытия дроссельной заслонки управляется тросиком. Следовательно, если мы обеспечим полностью одинаковое движение тросиков, при вращении рукоятки газа, то карбюраторы будут работать абсолютно синхронно.
Открываю секрет:
Регулировку можно делать в любой момент, не заводя двигатель и, время от времени проверять (тросики постепенно вытягиваются, причем, по-разному).
Тянем оболочки обоих тросиков из рукоятки газа, вниз, до упора. При этом, колпачки оболочек выдвигаются из гнезда рукоятки (у меня — на пару миллиметров, но бывает, что и на сантиметры вываливаются, причем, по-разному, когда тросики не настроены). Задача — настроить длину тросиков так, чтобы колпачки оказались на одной горизонтальной линии, т.е. при вращении рукоятки газа они должны синхронно (одновременно) натягиваться и одинаково управляться. Длина тросиков настраивается упорными винтами на карбюраторах (на трубочках, из которых тросики выходят). Медленно поворачивая рукоятку газа проверяем синхронность работы тросиков — колпачки одновременно начинают задвигаться в гнездо рукоятки и одновременно там останавливаются. При любой асинхронности — регулируем.
Вот, в принципе, и вся настройка. После такой регулировки карбюраторы работают абсолютно одинаково и синхронно, как на холостом ходу, так и при любых рабочих оборотах.
Дополнения по результатам обсуждений (то, что не удалось вставить в текст):
Порядок заводки (есть в заводской инструкции, но кто ж её читает? 🙂 ):
1. Перед заводкой необходимо открыть топливный краник и нажать на каждом из карбюраторов колпачок, утапливающий поплавок в поплавковой камере. Через открывшийся жиклер камера заполняется бензином. Колпачок держим нажатым до появления из-под него бензина. На обеих карбах. Данную «операцию» нужно делать каждый раз, после стоянки мотоцикла длительностью более получаса.
2. После этого, поднимаем «флажки» карбюраторов и 2-4 раза нажимаем на кик стартер до упора, проворачивая коленвал, чтобы бензиновая смесь образовалась и попала в цилиндры («подкачиваем бензин»), заодно, при этой «прокачке» кривошипно-шатунный механизм смазывается маслом, которое за время стоянки успело полностью стечь в картер — уменьшается трение при последующей заводке, и облегчается пуск двигателя.
3. Мотоцикл готов к заводке — подключаем аккумулятор, включаем зажигание и резко топаем по кик стартеру.
У меня, обычно, с этого одного «тыка» и заводится. Максимум — со второго (очень редко).
4. После заводки, даем движку выйти на рабочий режим — прогреться хоть с десяток секунд (лучше — пару минут), после чего опускаем «флажки» карбов.
5. После небольшого прогрева (еще пара минут) можно ехать.
Принцип работы и регулировка карбюратора
Многие рано или поздно сталкиваются по каким либо причинам с необходимостью регулировки карбюратора. Но не все знают как правильно это сделать. Данная статья может пригодится Вам в такой ситуации.
Карбюратор на первый взгляд выглядит сложным устройством, но немножко теории и Вам будет проще справиться с его настройкой.
Первое, что нужно знать, это хотя бы азы принципа работы карбюратора и основные его органы управления и регулировок.
С азов и начнем.
Рассмотрим принцип работы карбюратора на примере рисунка 1:
Как же игла перекрывает канал топлива? Да очень просто! Посмотрев рисунок 3 Вы все должны понять сразу. Чем больше Вы добавляете газ, тем выше поднимается игла золотника и тем больше открывается канал подачи топлива. Вместе с иглой поднимается и воздушная заслонка. Количество горючей смеси пропорционально увеличивается и подается в камеру сгорания, где и воспламеняется искрой свечи.
Для правильной дозировки топлива и воздуха в местах где происходит их забор устанавливаются жиклеры. Что же это такое, жиклер?
Схематически в разрезе он выглядит как показано на рисунке 5:
Что же такое поплавковая камера? Это емкость в карбюраторе, где находится топливо. С помощью пластикового или железного поплавочка уровень бензина в камере всегда остается стабильным. Как только топливо начинает уменьшаться, поплавочек опускается и иголка, с которой он соединен, открывает отверстие подачи топлива из бензобака. Бензин начинает течь, поплавок снова поднимается и уровень стабилизируется. Стоит упомянуть, что когда двигатель холодный, ему недостаточно топлива для нормального запуска и смесь нужна богаче. Согласитесь, крутить винты и менять жиклеры для этого не совсем удобно :о) Для этого создан дополнительный канал подачи топливной смеси, очень похожий на основной, только меньших размеров. Там также есть воздушная заслонка и игла, только управление заслонкой происходит в основном двумя способами:
1). Ручное управление. На руле установлен рычажок. На холодную Вы его поворачиваете, открывается дополнительный канал и поступает дополнительная смесь. По мере прогрева поворачиваем рычаг в исходное положение.
2). Автоматическое управление. Игла и заслонка соединены с устройством, которое принудительно нагревается. Нагрев зачастую происходит спиралью (подобной в кипятильнике), подключенной к генератору. При этом материал, который нагревает спираль, расширяется и толкает шток к которому и присоединена воздушная заслонка с иглой. Время прогрева рассчитано оптимальным образом, и по истечение определенного времени (приблизительно от 3 до 7 минут) канал полностью закрывается.
Следует учесть, что регулировку карбюратора нужно проводить только на хорошо прогретом двигателе. На холодном двигателе будет мешать не закрывшаяся заслонка дополнительной подачи топлива, неправильная работа двигателя по причине не полного его прогрева. Начинайте регулировку сразу после того Вы покатались на скутере или же после 10-15 минут прогрева.
Также перед регулировкой проверьте, а лучше смените на новую свечу зажигания. Проверьте загрязненность воздушного фильтра (читаем здесь), прочистите его или смените на новый. Убедитесь что выхлопная система чиста, о чем можно почитать здесь. Желательно также промыть в бензине и продуть сжатым воздухом все каналы и жиклеры в карбюраторе.
Вот только после этого можно приступать к регулировкам.
В основном принцип работы и устройство всех карбюраторов одинаковы, поэтому не важно какой маркой мотороллера Вы обладаете.
Конечно отрегулировать очень точно и правильно карбюратор может только опытный специалист, но благодаря данной статье Вы сможете это неплохо сделать и сами.
Карбюраторы мотоциклетного типа. Главная дозирующая система
Здравствуйте, уважаемые читатели. Мы с вами продолжаем изучать карбюраторы мотоциклетного типа.
В предыдущей публикации мы познакомились с основными вопросами образования и воспламенения горючей смеси. Сегодня будем изучать главную дозирующую систему, рассмотрим ее принцип работы и способы регулировки.
Главная дозирующая система: основные сведения
На современных мотоциклетных двигателях применяются карбюраторы с дозирующей иглой. Такое название обусловлено конструкцией главной дозирующей системы, так как именно игла конического сечения управляет смесеобразованием в диапазоне от 1/4 подъема дросселя вплоть до полного открытия.
Истечение топлива из большинства систем карбюратора происходит под действием разрежения, создаваемого за счет движения воздушного потока. Суммарное разрежение в воздушном тракте карбюратора зависит от скорости потока и сопротивления тракта. Рассмотрим эту зависимость более подробно.
Скорость потока воздуха на различных участках тракта зависит от площади их проходного сечения. Местные сужения при условии сохранения неразрывности газового потока вызывают увеличение его скорости, которое сопровождается увеличением разрежения. В современных карбюраторах скорость воздуха в диффузоре достигает 150 м/сек. Воздух при движении преодолевает трение о стенки тракта и местные сопротивления (распылитель, заслонка и т.д.), что также приводит к увеличению разрежения.
Практический интерес представляют разрежения, возникающие на двух участках: в диффузоре и смесительной камере за дросселем. На рисунке приведены кривые суммарного разрежения в карбюраторах, устанавливаемых на двигателях различных типов. Разрежение зависит от типа, числа цилиндров и режимов работы двигателя. Для двухтактного одноцилиндрового двигателя разрежения наименьшие (кривые 1 и 1′), для четырехтактного многоцилиндрового — наибольшие (кривые 4 и 4′).
Изменение разрежения в смесительной камере P_k и в диффузоре карбюратора P_g при разных оборотах двигателя n и положении дросселя φ_др: 1 и 1′ — двухтактный одноцилиндровый двигатель; 2 —четырехтактный одноцилиндровый; 3 — четырехтактный двухцилиндровый; 4 и 4′ — четырехтактный многоцилиндровый
По мере открытия дросселя разрежение в смесительной камере уменьшается, а в диффузоре — увеличивается. Характер изменения разрежения в диффузоре и смесительной камере не зависит от типа двигателя. Вначале при открытии дросселя примерно на 1/3 разрежение в смесительной камере уменьшается, а затем остается практически постоянным (кривые 1, 2, 3 и 4). Между тем на характер изменения разрежения в диффузоре его конструкция оказывает существенное влияние. Если в карбюраторе с диффузором постоянного сечения разрежение растет непрерывно (кривая 4′), то в карбюраторе с диффузором переменного сечения увеличение разрежения наблюдается лишь в начале открытия дросселя. При дальнейшем открытии более чем на 1/3 разрежение в диффузоре практически не меняется (кривая 1). При постоянном положении дросселя и увеличивающихся оборотах двигателя разрежение возрастает на всех участках воздушного тракта карбюратора.
Главная дозирующая система, состоящая только из распылителя и управляемая только величиной разрежения, подавала бы слишком много топлива на малых и средних подъемах дросселя и слишком мало на больших подъемах. Переобеднение смеси особенно опасно, так как, в худшем случае, может привести к выходу двигателя из строя. Вот почему была разработана система с конической дозирующей иглой. Рассмотрим принцип ее работы.
Принцип работы главной дозирующей системы
Игла двигается внутри калиброванной части распылителя и на небольших подъемах дросселя сечение, через которое осуществляется распыление топлива, маленькое. Как следствие, расход топлива тоже маленький, что и требуется для поддержания корректного состава смеси на малых подъемах. На бо́льших подъемах дросселя коническая часть иглы меньшего диаметра оказывается в зоне распыления топлива, тем самым увеличивая площадь проходного сечения распылителя. Это позволяет увеличить подачу топлива, как и необходимо для нормальной работы двигателя. Такая конструкция и соответствующий принцип работы главной дозирующей системы дает возможность поддерживать нужный состав смеси, поэтому двигатель способен работать правильно при любом положении дросселя.
Взаимодействие иглы с распылителем
Теперь, после того, как принцип работы стал ясен, становится понятен принцип регулировки главной дозирующей системы. Регулировка осуществляется с помощью иглы и калиброванного отверстия распылителя.
Регулировка состава смеси
Регулировка с помощью иглы
В карбюраторах Dellorto игла фиксируется в дроссельной заслонке с помощью стопорного кольца, установленного в одном из пазов (на цилиндрической части иглы). Условно пазы пронумерованы с тупого конца иглы, то есть сверху.
Чем выше относительно распылителя расположена канавка, в которую установлено стопорное кольцо, тем ниже опущена игла. Это означает, что для выхода конической части иглы из распылителя, дроссель необходимо поднять выше. И наоборот, если нужно задействовать коническую часть иглы на меньших подъемах дросселя, необходимо поднять иглу, переставив стопор в более низкую канавку (вторую, третью…). Например, на практике следствием богатой смеси может быть медлительность в наборе оборотов и глухой, глубокий звук выхлопа. В таком случае, необходимо опустить иглу, переместив стопорное кольцо в канавки выше.
Однако очень часто невозможно хорошо настроить карбюратор, изменяя только положение иглы. Кроме положения бывает необходимо варьировать геометрические параметры иглы (имеется в виду конусность и длина конической части). Они существенным образом влияют на процесс карбюрации, а от этого напрямую зависит приемистость двигателя. Таким образом, возникает необходимость заменить ее на другую с более подходящими геометрическими параметрами.
Для каждого семейства карбюраторов Dellorto существует широкий выбор дозирующих игл с различной геометрией. По мере необходимости в процессе настройки можно выбрать более подходящую иглу и приступить к испытаниям. К примеру, можно не получить достаточно богатую смесь на определенном подъеме дросселя при максимально поднятой игле. В таком случае нужно попробовать иглу с той же конусностью, но у которой конус будет начинаться раньше, т.е. цилиндрическая часть будет короче. В определенных случаях могут быть использованы иглы с различной конусностью, для лучшего соответствия тому или иному типу двигателя. При проведении подобного рода экспериментов всегда лучше варьировать только один параметр за раз.
Регулировка с помощью распылителя
Распылитель имеет калиброванное отверстие с того конца, которым сообщается с диффузором. В русскоязычной литературе часто употребляется словосочетание «диаметр распылителя», под которым подразумевается диаметр этого отверстия. Как правило, существует некий набор распылителей различных диаметров, для конкретного карбюратора.
С увеличением диаметра распылителя смесь обогащается, и наоборот — обедняется при уменьшении. Конечно, можно добиться того же эффекта, изменяя диаметр дозирующей иглы. Однако иглу подходящего диаметра может оказаться сложно приобрести. В таком случае намного проще подобрать распылитель, если такая необходимость вообще возникнет, так как карбюраторы Dellorto изначально оптимизированны под конкретный тип двигателя, для которого они предназначены.
Таким образом, настройка карбюратора чаще всего производится подбором жиклеров, установкой высоты иглы и подбора ее формы, в то время как распылитель и угол среза дроссельной заслонки остаются без изменений даже при наличии соответствующих сменных комплектов.
Распылитель главной дозирующей системы
Простейший распылитель представляет из себя трубку, соединяющую главный топливный жиклер с диффузором. Инженеры условно делят конструкции распылителей на «двухтактные» и «четырехтактные». Некоторые распылители (их относят к четырехтактному типу) имеют ряды отверстий по периметру, просверленных насквозь в главный топливный колодец.
Распылители, различающиеся конструкцией эмульсионных трубок
Конструкция распылителя для двухтактных двигателей
Распылитель вкручивается в насадок (Обобщенно гидравлический насадок — это короткая труба для выпуска жидкости в атмосферу или перетекания жидкости из одного резервуара в другой, тоже заполненный жидкостью), закрепленный в корпусе карбюратора.
Сопряжение распылителя с насадком
Как видно на рисунке ниже, в месте сопряжения распылителя с насадком образуется кольцевая щель, переходящая в кольцевую полость. Полость соединяется с атмосферой посредством дополнительного воздушного канала. Это дает возможность воздуху попасть в диффузор через кольцевую щель. Если распылитель имеет отверстия для эмульсирования топлива, к нему также подводится воздух по вспомогательному каналу.
Кольцевой зазор между распылителем и насадком
Входное отверстие этого канала обычно расположено перед диффузором во входной его части (под буквой b на рисунке ниже). Отверстие рядом — это воздушный канал системы холостого хода. Иногда, для уменьшения влияния пульсаций давления во впускном ресивере, вспомогательный канал сообщается с атмосферой напрямую. Например, как показано на рисунке под буквой a, через трубку в правой части карбюратора.
Способы сообщения вспомогательного воздушного канала с атмосферой
В совокупности главная дозирующая система работает следующим образом. Под действием разрежения топливо поднимается по распылителю. Истечение топлива регулируется жиклером и дозирующей иглой. Часть воздуха проходит по дополнительному каналу и попадает в кольцевую полость. В результате этого в области над кольцевой щелью и распылителем происходит интенсивное перемешивание топлива с воздухом.
Работа главной дозирующей системы с распылителем двухтактного типа: Топливо из поплавковой камеры поднимается по распылителю 6, проходя через жиклер 7, который вместе с иглой 3 регулирует расход топлива. Топливо первично смешивается с воздухом, прошедшим по каналу 2, в кольцевом зазоре между насадком 5 и распылителем. Эмульсия попадает в диффузор 4 и смешивается с воздухом, поступившем через входное устройство 1.
Наряду с диаметром распылителя регулировочным параметром является диаметр воздушного канала (чем он больше, тем смесь беднее), а также высота выступания распылителя и насадка в диффузор. Варианты исполнения распылителей и насадков представлены на рисунках ниже.
Распылители, различающиеся по высоте
Различные варианты исполнения насадков
Давайте подробнее рассмотрим распылитель.
При неизменных прочих условиях, чем меньше выступает распылитель в диффузор, тем на меньшую высоту топливу необходимо подняться из поплавковой камеры, что способствует более раннему началу самого процесса распыления топлива в диффузоре. «Низкий» распылитель является характерной особенностью спортивных карбюраторов. Наоборот, с высоким распылителем топливная смесь будет беднее в переходных (неустановившихся) режимах.
Те же физические принципы применимы к работе воздушного насадка. Его выступание в диффузор создает сопротивление воздушному потоку, поэтому за выступом создается зона сильного разрежения, что способствует истечению топлива. Иными словами, чем выше насадок, тем больше разрежение за ним и тем богаче становиться смесь. Обеднить смесь можно, используя карбюратор с небольшой высотой насадка.
Конструкция распылителя для четырехтактных двигателей
Описанная ниже конструкция в настоящее время так же широко применяется и для двухтактных двигателей, так как позволяет получать более бедную и однородную смесь на всех режимах.
Тело распылителя четырехтактного типа снабжено рядами отверстий, а кольцевая камера, которая его окружает, постоянно сообщается с атмосферой, но не сообщается напрямую с диффузором. Это позволяет топливу начать перемешиваться с воздухом еще до того, как оно достигнет диффузора, образуя эмульсию внутри распылителя. При такой конструкции распылителя насадок не имеет выступающей части в диффузор.
Принцип работы главной дозирующей системы с распылителем четырехтактного типа представлен на рисунке. Отверстия в нижней части погружены в топливо, так как они находятся ниже его уровня. Отверстия же в верхней части всегда открыты для прохода воздуха. Когда преобладают отверстия в верхней части, смесь обедняется, в то время как увеличение количества и/или диаметра отверстий в нижней части приводит к увеличению расхода топлива с интенсивным эмульсированием. Из-за расположения отверстий по всей площади распылителя кольцевая камера, заполненная изначально топливом, пустеет при наборе оборотов, так как топливо расходуется через эти отверстия, что приводит к переобогащению смеси в начале и к ее обеднению в дальнейшем.
Работа главной дозирующей системы с распылителем четырехтактного типа: Топливо из поплавковой камеры по распылителю 5 поднимается, проходя через жиклер, который вместе с иглой 3 регулирует расход топлива. Топливо первично смешивается с воздухом, прошедшим по каналу 2, в кольцевом зазоре между распылителем и корпусом. Эмульсия смешивается с воздухом, поступившим через входное устройство 1, в диффузоре и смесительной камере 4.
Проще говоря, расположение отверстий в теле распылителя и их диаметр существенно влияют на истечение топлива и зависящую от этого приемистость двигателя. Таким образом, варьируя параметры отверстий, можно добиться оптимального состава смеси для всех режимов работы.
Главный топливный жиклер
Главный топливный жиклер является основным регулировочным элементом карбюратора на режимах полной нагрузки и высоких подъемах дросселя. Он отвечает за подачу топлива в главную дозирующую систему. Главный топливный жиклер расположен в самой нижней точке поплавковой камеры, чтобы всегда находиться ниже уровня топлива, даже когда мотоцикл совершает резкие маневры. Для исключения завоздушивания главного жиклера во многих конструкциях выше него устанавливается перфорированный дефлектор (он же успокоитель).
Успокоитель над главным топливным жиклером
Выбор главного топливного жиклера оказывает существенное влияние на работу двигателя. Его подбор осуществляется экспериментальным путем. Поэтому лучше начинать с заведомо большего жиклера, делая таким образом настройку более безопасной для двигателя. Богатая смесь не дает лучшей производительности, но, по крайней мере, не приводит к повреждениям двигателя (прихват или прогар поршня) в отличие от переобедненной смеси.
Помочь в подборе главного топливного жиклера может состояние свечи зажигания после теста на полном открытии дросселя при максимальных оборотах. Изолятор центрального электрода должен быть светло-коричневым. Если электрод темнее, жиклер слишком большой, если он слишком светлый, почти белый — жиклер слишком мал.
Анализ центрального электрода результативен, только если свеча работала долго, в то время как оценка состояния бокового электрода дает результат и на новой свече. Основание бокового электрода с внутренней стороны (стороны, обращенной к изолятору) должно быть темного цвета как минимум до изгиба электрода. Вся остальная поверхность должна быть металлического цвета. Если боковой электрод черный и закопчен, смесь богатая, но, если он идеально чист, жиклер слишком мал. Помните — жиклер слишком малой пропускной способности может привести к серьезным повреждениям двигателя.
После подбора жиклера с требуемой пропускной способностью для гражданских мотоциклов рекомендуется увеличить ее на 2-3 единицы в качестве меры предострожности от сильной зависимости настроек, например, от окружающей температуры.
Прежде чем сделать вывод о том, что жиклер слишком большой, посчитайте площадь проходного сечения кольцевого зазора, образованного острым концом дозирующей иглы и распылителем. Сечение жиклера не должно быть меньше. Такое отношение должно выполняться для того, чтобы жиклер всегда контролировал расход топлива.
Однако, следует помнить, что жиклер играет важную роль еще и в переходном (неустановившемся) режиме, когда водитель резко полностью открывает дроссельную заслонку. В этом случае главная дозирующая система должна быстро включиться в работу. Если этого не происходит, в момент резкого открытия дросселя возникает так называемый «провал». Это значит, что смесь кратковременно обедняется и через какое-то время снова нормализуется по составу (обогащается).