Вопросы § 23
Физика А.В. Перышкин
1.Приведите примеры колебательных движений.
В качестве примеров колебательных движений можно привести: движение иглы швейной машины, качелей, маятника часов; колебание деревьев и листьев под действием ветра; колебание струн музыкальных инструментов; биение сердца и дыхание.
2. Как вы понимаете утверждение о том, что колебательное движение периодично?
Утверждение о том, что колебательное движение периодично означает, что оно повторяется через определенные одинаковые промежутки времени.
3. Что называется механическими колебаниями?
Периодом колебаний называется минимальный промежуток времени, через который это движение повторяется.
4. Пользуясь рисунком 53, объясните, почему по мере приближения шарика к точке О с любой стороны его скорость увеличивается, а по мере удаления от точки О в любую сторону скорость шарика уменьшается.
При приближении шарика к точке О направлении скорости и ускорения шарика совпадают, поэтому скорость увеличивается. При удалении шарика от точки О скорость и ускорение разнонаправленны, поэтому скорость уменьшается. Ускорение обусловлено силой упругости.
5. Почему шарик не останавливается, дойдя до положения равновесия?
Шарик не останавливается так как он при прохождении точки равновесия обладает скоростью, но на него в этой точке не действует сила упругости.
6. Какие колебания называются свободными?
Свободными называются колебания происходящие благодаря только начальному запасу энергии.
7. Какие системы называются колебательными? Приведите примеры.
Колебательными системами называют такие системы тел, которые способны совершать свободные колебания.
Физика 9 класс. Колебательное движение
Колебательное движение. Свободное колебание. Величины, характеризующие колебательное движение.
Одним из видов неравномерного движения является колебательное движение.
Примеры колебательного движения:
движение иглы швейной машины, движение качелей, движение маятника часов.
Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называют механическими колебаниями.
Колебательное движение периодично. Промежуток времени, через который движение тела повторяется, называется периодом колебаний.
Колебания, происходящие только благодаря начальному запасу энергии, называются свободными колебаниями.
Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая называется колебательной системой. В результате взаимодействия тел, входящих в колебательную систему, и возникает сила, возвращающая колеблющееся тело к положению равновесия.
Одним из видов колебательных систем является маятник.
Маятник – это твердое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси.
Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний.
Амплитуду обозначают буквой А и измеряют в СИ в единицах длины метрах(м), сантиметрах(см) и т.д.
Колеблющееся тело совершает одно полное колебание, если от начала колебаний проходит путь, равный четырем амплитудам.
Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.
Период колебаний обозначается буквой T и в СИ измеряется в секундах (с).
Число колебаний в единицу времени называется частотой колебаний.
Частота колебаний обозначается буквой ν. За единицу частоты принято одно колебание в секунду. Эта единица называется Гц.
Чтобы найти период колебаний, необходимо 1 сек. разделить на число колебаний в эту секунду, т.е. на частоту колебаний.
Изучая движение маятников разной длины, можно сделать вывод, что частота и период свободных колебаний нитяного маятника зависят от длины его нити. Чем больше длина нити маятника, тем больше период колебаний и меньше частота.
Свободные колебания в отсутствие трения и сопротивления воздуха называются собственными колебаниями, а их частота – собственной частотой колебательной системы.
Любая колебательная система имеет определенную собственную частоту, зависящую от параметров этой системы.
собственная частота пружинного маятника зависит от массы груза и жёсткости пружины
Кроме амплитуды, частоты, периода колебаний еще одной характеристикой колебательного движения является фаза.
Если два одинаковых маятника, совершают движения и в любой момент времени их скорости направлены в разные стороны, говорят, что колебания маятников происходят в разных фазах. Если два одинаковых маятника совершают движения и направление их скоростей совпадают, то говорят, что маятники колеблются в одинаковых фазах. Возможно также колебания маятников с разностью фаз.
Конспект составлен на основании теоретического материала учебника «Физика 9 класс» А.В. Перышкин, Е.М. Гутник.
Описание устройства основных органов швейной машины, кинематические схемы
Описание устройства основных органов швейной машины, кинематические схемы.
Все швейные машины делятся на специальные и универсальные. Специальные машины выполняют только одну определенную технологическую операцию: выполнение петель, пришив пуговиц и т. д. На универсальных машинах можно выполнять швы различных видов, строчки разной длины и направления, используя специальные приспособления можно вы-полнять петли и т. д.
Рабочие органы швейной машины. Рабочими органами швейной машины являются: игла, двигатель ткани, лапка, нитепритягиватель, челнок.
Работу каждого рабочего органа швейной машины обеспечивает соответствующий механизм. Образование строчки обеспечивается слаженной работой всех механизмов. В их основе, лежат механизмы преобразования вращательного движения в возвратно-поступательное. Такими механизмами преобразования являются: кривошипно-шатунный, эксцентриковый, кулачковый.
Наиболее распространенным преобразователем вращательного движения махового колеса и главного вала в возвратно-поступательное движение иглы и наоборот является кривошипно-шатунный механизм, который используется в механизме иглы (рис. 1).
На рисунке 1 показан механизм иглы, в котором применен кривошипно-шатунный механизм. Кривошипом 3 является цилиндрический диск, который жестко закрепляется на главном валу 2 и вращается вместе с ним. На палец кривошипа 4 надет шатун 5, который представляет собой стержень с двумя головками. Верхнюю головку шатуна 5а надевают на палец кривошипа, а нижнюю головку шатуна 5б соединяют с пальцем поводка 6, который играет роль ползуна. Игловодитель 7 вставлен в поводок и закреплен установочным винтом. Игла 9 крепится в игловодителе при помощи прижимного винта 8.
Основные звенья кривошипно-шатунного механизма: кривошип, шатун и ползун.
Кривошип жестко закреплен на валу, совершает вращательное движение и является ведущим звеном. Шатун является связующей деталью между кривошипом и ползуном, соединение с ними подвижно-шарнирное, он совершает колебательные движения и является передаточным звеном. Ползун совершает возвратно-поступательное движение, которое посредством жесткого разъемного соединения передается игловодителю с иглой, он является ведомым звеном.
Рис. 1. Кривошипно-шатунный механизм:
а — механизм иглы, б — кинематическая схема механизма, 1—маховое колесо, 2— главный вал,
3— кривошип, 4— палец кривошипа, 5—шатун, 5а— верхняя головка шатуна, 56 — нижняя головка
шатуна, 6— поводок, 7— игловодитель, 8— прижимной винт, 9— игла.
Механизм двигателя ткани.
Механизм двигателя ткани (рис. 2) состоит из трех узлов: узла горизонтального перемещения, узла вертикального перемещения и узла лапки.
В узле горизонтального перемещения используется эксцентриковый механизм (рис. 2, а), который служит для преобразования вращательного движения в возвратно-поступательное или колебательное.
Основным звеном данного механизма является эксцентрик — круглый диск, ось вращения которого не совпадает с его геометрической осью. На рисунке 3 показана общая схема эксцентрикового механизма. При вращении главного вала 1 наиболее утолщенный участок эксцентрика будет пе-ремещаться по окружности по движению часовой стрелки. На рисунке он обращен вниз (I), влево (II), вверх (III) и вправо (IV). Как видно, схема движения эксцентрика сходна со схемой движения кривошипа и его пальца. Шатун 4 и его головка 3, надетая на эксцентрик 2, совершает колебательные движения. Ползун 5 совершает прямолинейные движения вверх и вниз по направляющим 6.
В швейной машине к узлу горизонтального перемещения (рис. 2) относится вал продвижения 15. Коромысло вала 5, соединенное с нижней головкой шатуна-вилки 4, получает движение от главного вала 1 через эксцентрик 2. При вращении главного вала шатун-вилка совершает колебательное движение. Шатун поднимается, и вместе с ним поднимается коромысло 5, поворачивая вал продвижения против часовой стрелки. Рычаг 13, закрепленный на левом конце вала, отклоняется вместе с валом и продвигает зубчатую вилку от работающего. Продольное перемещение рейки 14 регулируется с помощью рычага регулятора строки 3, который соединен с шатуном через шарнирный винт и одетый на него ползун. Ползун, в свою очередь, вставлен в паз рычага регулятора строчки. Опуская или поднимая рычаг, мы изменяем величину поворота шатуна, что при-водит к большому повороту вала продвижения, т. е. увеличивается продольное перемещение рейки и, следовательно, длина стежка.
Рис. 3. Общая схема эксцентрикового механизма:
1—главный вал, 2— эксцентрик, 3—головка шатуна, 4—шатун, 5— ползун, 6— направляющие.
Эксцентриковый механизм состоит из эксцентрика, шатуна-вилки и коромысла.
Эксцентрик жестко закреплен на валу и совершает вращательное движение, является ведущим звеном. Шатун-вилка (как и в кривошипно-шатунном механизме) совершает колебательные движения, соединение эксцентрика с шатуном и ша-туна с коромыслом — подвижное. Коромысло жестко закреплено на валу продвижения и совершает колебательные движе-ния, является ведомым звеном.
В узле вертикального перемещения применен кулачковый механизм, который служит для преобразования вращательного движения в сложное повторяющееся, совершающееся по определенному замкнутому циклу. Основной деталью данного механизма является кулачок (различают кулачки плоские (дисковые) и цилиндрические). При колебательных движениях (рис. 2, б) качающегося валика 7 кулачок 8 нажимает на рожки вилки 9, которые его охватывают. Вилка поворачивается вместе с валом подъема 10, поднимающим коромысло 11, на конце которого находится ролик 12, вставленный в вилку рычага двигателя ткани 13. При подъеме рычаг давит на верхний рожок вилки и поднимает его вместе с рейкой. Вал подъема получает движение от главного вала и качающегося валика, который, в свою очередь, получает движение от коленчатого вала через шатун. Его конструкция позволяет регулировать высоту подъема рейки в зависимости от толщины стачиваемых тканей.
Рейка работает с прижимной лапкой, которая должна с определенной силой прижимать ткань к рейке по всей ее площади. В узле лапки для этого имеется регулируемая пружина, а также детали, с помощью которых осуществляется подъем лапки и опускание ее на ткань. Прижимная лапка может быть с подвижной подошвой и с качающейся на шарнире. Такие лапки удобны тем, что позволяют легко проходить утолщенные места.
Узел лапки имеет следующее устройство (рис. 4). Прижимная лапка 8 прикреплена винтом к стержню 7. Над пружинодержателем 4 надета спиральная пружина 2, на которую сверху надавливает регулировочный винт 1. Под действием пружины лапка нажимает на ткань, сила прижима может быть изменена регулировочным винтом. Если винт поворачивать вправо, пружина, сжимаясь, создает большее давление лапки на ткань, и наоборот. Для подъема лапки в головке машины шарнирным винтом присоединен рычаг 5, снабженный кулачком. Если повернуть рычаг и подвести его кулачок под боковой отросток муфточки 3, то муфточка поднимется и поднимет стержень лапки и лапку.
Рис. 4. Механизм лапки:
а—узел лапки, б — кинематическая схема узла лапки: 1—регулировочный винт, 2— спиральная пружина, 3—отросток муфточки, 4—пружинодержатель, 5— рычаг, 6—7— стержни, 8— прижимная лапка.
Преобразование вращательного движения главного вала в колебательное движение челнока осуществляется с по-мощью механизма челнока (рис. 5). Движение главного вала посредством шатуна 2 преобразуется в колебательное движение качающегося валика 3. Ползуну 5, вставленному в вилку 4 качающегося валика, передается колебательное движение от ва-лика. Ползун перемещается в вилке и приводит в движение вал челнока 6. На левом конце челночного вала имеется обойма, куда вставляется челнок 7. При передаче колебательного движения с качающегося валика на вал челнока угол поворота вала увеличивается.
Рис. 5. Механизм челнока:
а — узел челнока, б — кинематическая схема механизма челнока. 1— кривошип, 2— шатун, 3— качающийся валик, 4— вилка, 5— ползун, 6— вал челнока, 7— обойма с челноком.
Механизмом нитепритягивателя осуществляется подача нитки и затяжка стежка. Ролик 3 (рис. 6) рычага нитепритя-гивателя скользит в пазу 4 цилиндрического кулачка 5. Рычаг 2 укреплен шарнирным винтом 7 в отверстии рукава машины, а его плечо, имеющее ушко 6 для прохождения нитки, выступает из прорези фронтовой доски.
При вращении кулачка ролик скользит по пазу и приводит в движение рычаг нитепритягивателя, который переме-щается вверх и вниз с переменной скоростью и участвует в процессе образования стежка —медленно подает нитку и дви-жется вниз, быстро поднимается вверх и затягивает стежок.
Рис. 6. Механизм нитепритягивателя:
а—узел механизма, б — кинематическая схема механизма нитепритягивателя:
1—главный вал, 2— рычаг, 3— ролик, 4— паз, 5— кулачок, 6— ушко, 7— шарнирный винт.
Процесс образования челночного стежка.
Челночный стежок образуется двумя нитками: игольной (верхней) и челночный (нижней). Одна из них (игольная) проходит сверху ткани, вторая (челночная) — снизу ткани. При образовании стежка переплетаемые нитки натягиваются и прижимают ткани друг к другу. Верхнюю нитку заправляют в ушко машинной иглы, а нижнюю наматывают на шпульку, которую вставляют в челнок. Схема образования челночного стежка (Рис. 7):
Рис. 7 Схема образования челночного стежка
Позиция I. Игла 1, проколов ткани, проводит верхнюю нитку под игольную пластину, при подъеме образуется петля, при этом нитепритягиватель 2 опускается до середины прорези и подает нитку.
Позиция II. Игла поднимается вверх, а носик челнока 3 захватывает петлю и, двигаясь по часовой стрелке, расширя-ет ее. Рычаг нитепритягивателя, опускаясь вниз, подает нитку челноку.
Позиция III. Челнок расширяет петлю верхней нитки и обводит ее вокруг шпульки. Нитепритягиватель, поднимаясь вверх, вытягивает нитку из челночного комплекта.
Позиция IV. Когда петля верхней нитки обойдет вокруг шпульки более чем на 180°, рычаг нитепритягивателя быст-ро поднимается вверх и затягивает стежок. Челнок начинает двигаться против часовой стрелки.
Позиция V. Зубья рейки 5 и лапка продвигают ткань, для того чтобы игла следующий свой прокол сделала на рас-стоянии, равном длине стежка.
Рабочие органы швейной машины
Рабочими органами швейной машины являются: игла, двигатель ткани, лапка, нитепритягиватель, челнок.
Работу каждого рабочего органа швейной машины обеспечивает соответствующий механизм. Образование строчки обеспечивается слаженной работой всех механизмов. В их основе лежат механизмы преобразования вращательного движения в возвратно-поступательное. Такими механизмами преобразования являются: кривошипно-шатунный, эксцентриковый, кулачковый.
Наиболее распространенным преобразователем вращательного движения махового колеса и главного вала в возвратно-поступательное движение иглы и наоборот является кривошипно-шатунный механизм, который используется в механизме иглы.
Общая схема кривошипно-шатунного механизма
1 — кривошип,
2 — главный вал,
3 — палец кривошипа,
4 — шатун,
5 — ползун,
6 — направляющие.
Если постепенно поворачивать вал 2 и кривошип 1 в направлении вращения часовой стрелки, то палец кривошипа 3 будет двигаться по окружности — из крайнего нижнего положения (I) он отходит влево и поднимается (II). Вместе с ним отклоняется влево шатун 4. Ползун 5 поднимается прямолинейно вверх, скользя по направляющим 6. При верхнем положении палец кривошипа, шатун и поводок будут находиться в крайнем верхнем положении (III). Затем палец опускается по правой части окружности. При этом шатун отклоняется вправо от средней линии и опускается, передавая ползуну движение вниз по направляющим (IV).
Кривошипно-шатунный механизм
а — механизм иглы,
б — кинематическая схема механизма:
На рисунке выше показан механизм иглы, в котором применен кривошипно-шатунный механизм. Кривошипом 3 является цилиндрический диск, который жестко закрепляется на главном валу 2 и вращается вместе с ним. На палец кривошипа 4 надет шатун 5, который представляет собой стержень с двумя головками. Верхнюю головку шатуна 5 а надевают на палец кривошипа, а нижнюю головку шатуна 5 б соединяют с пальцем поводка 6, который играет роль ползуна. Игловодитель 7 вставлен в поводок и закреплен установочным винтом. Игла 9 крепится в игловодителе при помощи прижимного винта 8.
Основные звенья кривошипно-шатунного механизма: кривошип, шатун и ползун.
Кривошип жестко закреплен на валу, совершает вращательное движение и является ведущим звеном. Шатун является связующей деталью между кривошипом и ползуном, соединение с ними подвижно-шарнирное, он совершает колебательные движения и является передаточным звеном. Ползун совершает возвратно-поступательное движение, которое посредством жесткого разъемного соединения передается игловодителю с иглой, он является ведомым звеном.
Механизм двигателя ткани
А — эксцентриковый механизм,
Б — кулачковый механизм,
а — механизм двигателя ткани,
б — кинематическая схема механизма:
На рисунке ниже показана общая схема эксцентрикового механизма.
Общая схема эксцентрикового механизма
При вращении главного вала наиболее утолщенный участок эксцентрика будет перемещаться по окружности по движению часовой стрелки. На рисунке он Обращен вниз (I), влево (II), вверх (III) и вправо (IV). Как видно, схема движения эксцентрика сходна со схемой движения кривошипа и его пальца.
Шатун 4 и его головка 3, надетая на эксцентрик 2, совершает колебательные движения. Ползун 5 совершает прямолинейные движения вверх и вниз по направляющим 6.
В швейной машине к узлу горизонтального перемещения относится вал продвижения 15.
Коромысло вала 11, соединенное с нижней головкой шатуна-вилки 4, получает движение от главного вала через эксцентрик 2. При вращении главного вала шатунвилка совершает колебательное движение.
Шатун поднимается, и вместе с ним поднимается коромысло 5, поворачивая вал продвижения против часовой стрелки. Рычаг 13, закрепленный на левом конце вала, отклоняется вместе с валом и продвигает зубчатую вилку от работающего. Продольное перемещение рейки 14 регулируется с помощью рычага регулятора строки 3, который соединен с шатуном через шарнирный винт и одетый на него ползун. Ползун, в свою очередь, вставлен в паз рычага регулятора строчки. Опуская или поднимая рычаг, мы изменяем величину поворота шатуна, что приводит к большому повороту вала продвижения, т. е. увеличивается продольное перемещение рейки и, следовательно, длина стежка.
Эксцентриковый механизм состоит из эксцентрика, шатуна-вилки и коромысла.
Эксцентрик жестко закреплен на валу и совершает вращательное движение, является ведущим звеном. Шатун-вилка (как и в кривошипно-шатунном механизме) совершает колебательные движения, соединение эксцентрика с шатуном и шатуна с коромыслом — подвижное. Коромысло жестко закреплено на валу продвижения и совершает колебательные движения, является ведомым звеном.
В узле вертикального перемещения применен кулачковый механизм, который служит для преобразования вращательного движения в сложное повторяющееся, совершающееся по определенному замкнутому циклу. Основной деталью данного механизма является кулачок (различают кулачки плоские (дисковые) и цилиндрические).
При колебательных движениях качающегося валика 7 кулачок 8 нажимает на рожки вилки 9, которые его охватывают. Вилка поворачивается вместе с валом подъема 10, поднимающим коромысло), на конце которого находится ролик 12, вставленный в вилку рычага двигателя ткани 13. При подъеме рычаг давит на верхний рожок вилки и поднимает его вместе с рейкой.
Вал подъема получает движение от главного вала и качающегося валика, который, в свою очередь, получает движение от коленчатого вала через шатун. Его конструкция позволяет регулировать высоту подъема рейки в зависимости от толщины стачиваемых тканей.
Рейка работает с прижимной лапкой, которая должна с определенной силой прижимать ткань к рейке по всей ее площади. В узле лапки для этого имеется регулируемая пружина, а также детали, с помощью которых осуществляется подъем лапки и опускание ее на ткань.
Прижимная лапка может быть с подвижной подошвой и с качающейся на шарнире. Такие лапки удобны тем, что позволяют легко проходить утолщенные места. Узел лапки имеет следующее устройство.
Механизм лапки
а — узел лапки,
б — кинематическая схема узла лапки:
Прижимная лапка 8 прикреплена винтом к стержню 7. Над пружино-держателем 4 надета спиральная пружина 2, на которую сверху надавливает регулировочный винт. Под действием пружины лапка нажимает на ткань, сила прижима может быть изменена регулировочным винтом. Если винт поворачивать вправо, пружина, сжимаясь, создает большее давление лапки на ткань, и наоборот.
Для подъема лапки в головке машины шарнирным винтом присоединен рычаг 5, снабженный кулачком. Если повернуть рычаг и подвести его кулачок под боковой отросток муфточки 3, то муфточка поднимется и поднимет стержень лапки и лапку.
Преобразование вращательного движения главного вала в колебательное движение челнока осуществляется с помощью механизма челнока.
Механизм челнока
а — узел челнока,
б — кинематическая схема механизма челнока:
Движение главного вала посредством шатуна 2 преобразуется в колебательное движение качающегося валика 3. Ползуну 5, вставленному в вилку 4 качающегося валика, передается колебательное движение от валика. Ползун перемещается в вилке и приводит в движение вал челнока 6. На левом конце челночного вала имеется обойма, куда вставляется челнок 7. При передаче колебательного движения с качающегося валика на вал челнока угол поворота вала увеличивается.
Механизмом нитепритягивателя осуществляется подача нитки и затяжка стежка. Ролик 3 рычага нитепритягивателя скользит в пазу 4 цилиндрического кулачка 5.
Механизм нитепритягивателя
а — узел механизма,
6 — кинематическая схема механизма нитепритягивателя:
Рычаг 2 укреплен шарнирным винтом 7 в отверстии 1 рукава машины, а его плечо, имеющее ушко 6 для прохождения нитки, выступает из прорези фронтовой доски.
При вращении кулачка ролик скользит по пазу и приводит в движение рычаг нитепритягивателя, который перемещается вверх и вниз с переменной скоростью и участвует в процессе образования стежка — медленно подает нитку и движется вниз, быстро поднимается вверх и затягивает стежок.
Вопросы