Грузовик разгоняется на дороге а в кузове лежит незакрепленный груз

Содержание

Задачи на равноускоренное движение: примеры решения задач по кинематике

b6d29c8f31cf46b19a05331fd8eb30a0

При решении задач на равноускоренное движение не обойтись без формул кинематики и второго закона Ньютона. Рекомендуем сначала изучить теорию по этим разделам, а уже потом приступать к практике.

Больше полезных сведений и ежедневная интересная рассылка – на нашем телеграм-канале, присоединяйтесь!

Равноускоренное движение: определение и примеры

Равноускоренное движение – это движение с меняющейся скоростью, но постоянным ускорением (a=const).

Самый простой случай такого движения – равноускоренное прямолинейное движение.

Вот типичные примеры равноускоренного движения:

Вопросы с ответами на равноускоренное движение

Вопрос 1. График движения представляет собой прямую линию. Является ли движение тела равноускоренным?

Ответ: да. Если график представляет собой кривую, то ускорение тела меняется со временем. Равномерное движение, которое также описывается прямой – частный случай равноускоренного движения с нулевым ускорением. Перемещение при равноускоренном движении численно равно площади трапеции, ограниченной осями координат и графиком.

Вопрос 2. Тело равномерно движется по окружности. Как направлено ускорение?

Ответ: перпендикулярно телу. В общем случае при криволинейном движении ускорение имеет две составляющие: нормальную (центростремительное ускорение) и тангенциальную, направленную по касательной к скорости. Тангенциальное ускорение при равномерном движении по окружности равно нулю.

Вопрос 3. Является ли ускорение свободного падения постоянным ускорением?

Ответ: да, является.

Вопрос 4. Может ли тело иметь нулевую скорость и ненулевое ускорение?

Ответ: да, может. После того, как скорость станет равна нулю, тело начнет двигаться в другом направлении.

Вопрос 5. Что такое ускорение?

Ответ: Векторная физическая величина, характеризующая изменение скорости за единицу времени. При равноускоренном движении скорость меняется одинаково за равные промежутки времени.

Задачи на равноускоренное движение

Сначала обратимся к уже приведенным примерам.

Задача №1. Равноускоренное движение

Условие

Рояль роняют с 12 этажа с нулевой начальной скоростью. За какое время он долетит до земли? Один этаж имеет высоту 3 метра, сопротивлением воздуха принебречь.

Решение

Известно, что рояль движется с ускорением свободного падения g. Применим формулу для пути из кинематики:

screenshot 1

Начальная скорость равна нулю, а за точку отсчета примем то место, откуда рояль начал движение вниз.

Скорость свободно падающих тел не зависит от их массы. Любое тело в поле силы тяжести Земли будет падать с одинаковым ускорением. Этот факт был экспериментально установлен Галилео Галилеем в его знаменитых экспериментах со сбрасыванием предметов с Пизанской башни.

Задача №2. Равноускоренное движение

Условие

Автобус ехал со скоростью 60 км/ч и начал тормозить на светофоре с ускорением 0,5 метра на секунду в квадрате. Через сколько секунд его скорость станет равной 40 км/ч?

Решение

Вспоминаем формулу для скорости:

screenshot 3

Начальная скорость дана в условии, но автобус тормозит, а значит, векторы скорости и ускорения направлены в противоположные стороны. В проекции на горизонтальную ось ускорение будем записывать со знаком минус:

screenshot 4

Обязательно переводите величины в систему СИ.Чтобы перевести километры в час в метры в секунду нужно значение скорости в километрах в час сначала умножить на 1000, а потом разделить на 3600.

Задача №3. Нахождение ускорения

Условие

Тело движется по закону S(t)=3t+8t^2+2t. Каково ускорение тела?

Решение

Вспоминаем, что скорость – это производная пути по времени, а ускорение – производная скорости:

screenshot 5

Ответ: 16 метров на секунду в квадрате.

При решении физических задач не обойтись без знания производной.

Кстати! Для всех наших читателей действует скидка 10% на любой вид работы.

Задача №4. Нахождение ускорения при равноускоренном движении

Условие

Грузовик разгоняется на дороге, а в кузове лежит незакрепленный груз. С каким максимальным ускорением должен разгоняться грузовик, чтобы груз не начал смещаться к заднему борту? Коэффициент трения груза о дно кузова k=0.2, g=10 м/c2

Решение

Для решения этой задачи нужно использовать второй закон Ньютона. Сила трения в данном случае равна F=kmg.

screenshot 6

Ответ: 2 метра на секунду в квадрате.

Задача №5. Нахождение ускорения и скорости при равноускоренном движении

Условие

За пятую секунду прямолинейного движения с постоянным ускорением тело проходит путь 5 м и останавливается. Найти ускорение тела.

Решение

Конечная скорость тела v равна 0, v нулевое – скорость в конце 4-й секунды.

screenshot 7

Ответ: 10 метров на секунду в квадрате.

Нужна помощь в решении задач? Обращайтесь в профессиональный студенческий сервис в любое время.

c38b6d050dfd47d58c2cff2970fdd37e.small

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник

В кузове автомобиля лежит груз. При каком минимальном ускорении автомобиля груз

Условие задачи:

В кузове автомобиля лежит груз. При каком минимальном ускорении автомобиля груз начнет скользить относительно кузова? Коэффициент трения между дном кузова и грузом равен 0,2.

Задача №2.1.85 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

На груз, лежащий в кузове автомобиля, в момент начала скольжения действуют следующие силы: сила тяжести \(mg\), сила реакции опоры со стороны автомобиля \(N\), сила трения скольжения \(F_<тр>\). Естественно, ускорение груза (относительно Земли) в этот момент равно ускорению автомобиля \(a\).

Запишем законы Ньютона (первый для оси \(y\), второй для оси \(x\)) в проекции на ось \(x\) и \(y\).

Сила трения скольжения, учитывая выражение (2) системы, определяется формулой:

Подставим эту формулу в выражение (1) системы:

Посчитаем значение этого ускорения:

\[a = 0,2 \cdot 10 = 2\; м/с^2\]

Интересен следующий вопрос: а куда будет двигаться груз – по направлению ускорения автомобиля или против него?

Чтобы ответить на него, нужно перейти в систему отсчета (СО), связанную с автомобилем. Заметьте, что эта СО неинерциальна! Чтобы компенсировать влияние неинерциальности, нужно к грузу приложить силу инерции, которая равна \(> = ma\), но направлена в противоположную сторону от ускорения автомобиля \(a\).

Так вот, когда эта сила инерции превысит значение максимальной силы трения покоя, то есть \( \geq \mu mg\), то груз начнет скользить по направлению этой силы инерции, то есть в сторону, противоположную ускорению автомобиля.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Источник

С каким максимальным ускорением должен разгоняться грузовик, чтобы незакрепленный груз в его кузове не начал смещаться к заднему борту? Ко

В 20:37 поступил вопрос в раздел ЕГЭ (школьный), который вызвал затруднения у обучающегося.

Вопрос вызвавший трудности

Ответ подготовленный экспертами Учись.Ru

Для того чтобы дать полноценный ответ, был привлечен специалист, который хорошо разбирается требуемой тематике «ЕГЭ (школьный)». Ваш вопрос звучал следующим образом: С каким максимальным ускорением должен разгоняться грузовик, чтобы незакрепленный груз в его кузове не начал смещаться к заднему борту? Коэффициент трения груза о дно кузова 0,2.

После проведенного совещания с другими специалистами нашего сервиса, мы склонны полагать, что правильный ответ на заданный вами вопрос будет звучать следующим образом:

ответ к заданию по физике
img 55032916418

НЕСКОЛЬКО СЛОВ ОБ АВТОРЕ ЭТОГО ОТВЕТА:

AhkriLK6BRw

Работы, которые я готовлю для студентов, преподаватели всегда оценивают на отлично. Я занимаюсь написанием студенческих работ уже более 4-х лет. За это время, мне еще ни разу не возвращали выполненную работу на доработку! Если вы желаете заказать у меня помощь оставьте заявку на этом сайте. Ознакомиться с отзывами моих клиентов можно на этой странице.

ПОМОГАЕМ УЧИТЬСЯ НА ОТЛИЧНО!

Выполняем ученические работы любой сложности на заказ. Гарантируем низкие цены и высокое качество.

Деятельность компании в цифрах:

Зачтено оказывает услуги помощи студентам с 1999 года. За все время деятельности мы выполнили более 400 тысяч работ. Написанные нами работы все были успешно защищены и сданы. К настоящему моменту наши офисы работают в 40 городах.

Площадка Учись.Ru разработана специально для студентов и школьников. Здесь можно найти ответы на вопросы по гуманитарным, техническим, естественным, общественным, прикладным и прочим наукам. Если же ответ не удается найти, то можно задать свой вопрос экспертам. С нами сотрудничают преподаватели школ, колледжей, университетов, которые с радостью помогут вам. Помощь студентам и школьникам оказывается круглосуточно. С Учись.Ru обучение станет в несколько раз проще, так как здесь можно не только получить ответ на свой вопрос, но расширить свои знания изучая ответы экспертов по различным направлениям науки.

Источник

Уравнение перемещения тела при равноускоренном движении формула. Прямолинейное равноускоренное движение

Время на чтение: 19 минут

Равноускоренное движение: определение и примеры

Равноускоренное движение – это движение с меняющейся скоростью, но постоянным ускорением (a=const).

Самый простой случай такого движения – равноускоренное прямолинейное движение.

Вот типичные примеры равноускоренного движения:

Вопросы с ответами на равноускоренное движение

Ответ: да. Если график представляет собой кривую, то ускорение тела меняется со временем. Равномерное движение, которое также описывается прямой – частный случай равноускоренного движения с нулевым ускорением. Перемещение при равноускоренном движении численно равно площади трапеции, ограниченной осями координат и графиком.

Ответ: перпендикулярно телу. В общем случае при криволинейном движении ускорение имеет две составляющие: нормальную (центростремительное ускорение) и тангенциальную, направленную по касательной к скорости. Тангенциальное ускорение при равномерном движении по окружности равно нулю.

Ответ: да, может. После того, как скорость станет равна нулю, тело начнет двигаться в другом направлении.

Ответ: Векторная физическая величина, характеризующая изменение скорости за единицу времени. При равноускоренном движении скорость меняется одинаково за равные промежутки времени.

Задачи на равноускоренное движение

Сначала обратимся к уже приведенным примерам.

Задача №1. Равноускоренное движение

Рояль роняют с 12 этажа с нулевой начальной скоростью. За какое время он долетит до земли? Один этаж имеет высоту 3 метра, сопротивлением воздуха принебречь.

Известно, что рояль движется с ускорением свободного падения g. Применим формулу для пути из кинематики:

Начальная скорость равна нулю, а за точку отсчета примем то место, откуда рояль начал движение вниз.

Скорость свободно падающих тел не зависит от их массы. Любое тело в поле силы тяжести Земли будет падать с одинаковым ускорением. Этот факт был экспериментально установлен Галилео Галилеем в его знаменитых экспериментах со сбрасыванием предметов с Пизанской башни.

Задача №2. Равноускоренное движение

Автобус ехал со скоростью 60 км/ч и начал тормозить на светофоре с ускорением 0,5 метра на секунду в квадрате. Через сколько секунд его скорость станет равной 40 км/ч?

Вспоминаем формулу для скорости:

screenshot 3

Начальная скорость дана в условии, но автобус тормозит, а значит, векторы скорости и ускорения направлены в противоположные стороны. В проекции на горизонтальную ось ускорение будем записывать со знаком минус:

screenshot 4

Обязательно переводите величины в систему СИ.Чтобы перевести километры в час в метры в секунду нужно значение скорости в километрах в час сначала умножить на 1000, а потом разделить на 3600.

Задача №3. Нахождение ускорения

Тело движется по закону S(t)=3t+8t^2+2t. Каково ускорение тела?

Вспоминаем, что скорость – это производная пути по времени, а ускорение – производная скорости:

screenshot 5

Ответ: 16 метров на секунду в квадрате.

Задача №4. Нахождение ускорения при равноускоренном движении

Грузовик разгоняется на дороге, а в кузове лежит незакрепленный груз. С каким максимальным ускорением должен разгоняться грузовик, чтобы груз не начал смещаться к заднему борту? Коэффициент трения груза о дно кузова k=0.2, g=10 м/c2

Для решения этой задачи нужно использовать второй закон Ньютона. Сила трения в данном случае равна F=kmg.

screenshot 6

Ответ: 2 метра на секунду в квадрате.

Задача №5. Нахождение ускорения и скорости при равноускоренном движении

За пятую секунду прямолинейного движения с постоянным ускорением тело проходит путь 5 м и останавливается. Найти ускорение тела.

Конечная скорость тела v равна 0, v нулевое – скорость в конце 4-й секунды.

screenshot 7

Ответ: 10 метров на секунду в квадрате.

Нужна помощь в решении задач? Обращайтесь в

Это движение, при котором скорость тела за любые равные промежутки времени изменяется одинаково, т.е. ускорение постоянно.

Примерами такого движения является свободное падение тел вблизи поверхности Земли и движение под действием постоянной силы.

При равноускоренном прямолинейном движении координата тела меняется с течением времени в соответствии с законом движения:

img Wm8Lb

Проекция скорости материальной точки на ось 0X в этом случае меняется по следующему закону:

img 0wqTQ9

При этом проекции скорости и ускорения могут принимать различные значения, в том числе и отрицательные.

Графики зависимости x (t ) иx (t ) представляют собой соответственно прямую и параболу, причем, как и в алгебре, по коэффициентам в уравнениях прямой и параболы можно судить о расположении графика функции относительно координатных осей.

img ob675l

При равноускоренном движении по прямой скорость тела определяется формулой:

Энциклопедичный YouTube

В случае одномерного равноускоренного движения вдоль координаты x имеет место формула:

Из вышеприведенных формул можно получить выражения для определения конечной скорости тела, при известных начальной скорости, ускорении и перемещении:

В случае криволинейного равноускоренного движения имеем:

Аналогичные соотношения можно записать для выражений:

И найти конечную скорость по теореме Пифагора

Теорема о кинетической энергии точки

Записав аналогичные соотношения для координат y и z и просуммировав все три равенства получим соотношение:

1.2. Прямолинейное движение

1.2.2. Равнопеременное прямолинейное движение

Равнопеременным прямолинейным движением материальной точки (тела) называют движение, скорость которого за любые равные промежутки времени

изменяется соответственно на равные величины

Векторную физическую величину, характеризующую быстроту изменения скорости, численно равную отношению изменения скорости ко времени, за которое это изменение произошло:

Траекторией материальной точки при равнопеременном прямолинейном движении является прямая линия.

Различают два вида равнопеременного прямолинейного движения: равноускоренное прямолинейное движение и равнозамедленное прямолинейное движение.

Скорость материальной точки при равнопеременном движении изменяется по закону:

Модуль скорости при равнопеременном движении может как увеличиваться (равноускоренное движение), так и уменьшаться (равнозамедленное движение).

Уравнение движения материальной точки при равнопеременном прямолинейном движении записывается в виде:

Если равнопеременное прямолинейное движение материальной точки (тела) происходит вдоль одной из координатных осей (например, Ox ), то уравнение движения целесообразно записывать в виде:

Равноускоренное прямолинейное движение

Равноускоренным прямолинейным движением называют движение, скорость которого за любые равные промежутки времени увеличивается на равные величины. Векторы скорости v → и ускорения a → при таком движении имеют одинаковые направления:

положительным направлением оси Ox (проекции скорости и ускорения положительные),

то уравнение движения принимает вид (рис. 1.4):

Если вектор начальной скорости (а значит, и ускорения) материальной точки совпадает с отрицательным направлением оси Ox (проекции скорости и ускорения отрицательные),

01 005

то уравнение движения выглядит следующим образом (рис. 1.5):

При равноускоренном прямолинейном движении модуль вектора перемещения и пройденный материальной точкой (телом ) путь совпадают и могут быть вычислены с помощью формулы

| Δ r → (t) | = S (t) = v 0 t + a t 2 2

Путь, пройденный материальной точкой при равноускоренном прямолинейном движении за n секунд:

01 006

Равнозамедленное прямолинейное движение

Равнозамедленным прямолинейным движением называют движение, скорость которого за любые равные промежутки времени уменьшается на равные величины. Вектор скорости v → и вектор ускорения a → при таком движении имеют противоположные направления:

01 007

Уравнение движения в этом случае имеет вид:

Если при равнозамедленном прямолинейном движении вектор начальной скорости материальной точки совпадает с отрицательным направлением оси Ox (проекция начальной скорости отрицательная), то вектор ее ускорения направлен в положительном направлении указанной оси (проекция ускорения положительная) (рис. 1.8).

01 008

Уравнение движения выглядит следующим образом:

При равнозамедленном прямолинейном движении существует точка остановки (точка поворота), где скорость обращается в нуль; ей соответствует момент времени τ ост, который определяется из условия v (τ ост) = 0:

До точки остановки тело движется равнозамедленно (в ту сторону, куда направлен вектор начальной скорости v → 0).

После точки остановки тело разворачивается и движется в противоположном направлении равноускоренно с нулевой начальной скоростью.

Если точка остановки не попадает в указанный интервал времени, то пройденный путь определяют как

Если точка остановки попадает в указанный интервал времени, то пройденный путь определяют как сумму:

01 009

При равнозамедленном прямолинейном движении модуль вектора перемещения материальной точки удобно вычислять как разность координат (рис. 1.10):

01 010

Вычислим координаты материальной точки в моменты времени t 1 = 2,0 c и t 2 = 4,0 c. Для этого подставим в уравнение движения значения t 1 и t 2:

Модуль перемещения материальной точки вычислим как разность координат:

Перемещение материальной точки равно нулю, т.е. она возвратилась в то место на координатной оси, где находилась в момент времени t 1 = 2,0 c.

Решение. При равнопеременном движении зависимость проекции скорости от времени имеет вид:

Запишем уравнение движения материальной точки:

Точка остановки, вычисленная по формуле

τ ост = v 0 a = 9,0 1,5 = 6,0 c,

попадает в интервал времени, указанный в условии задачи.

В интервале времени от t1 = 4,0 c до τост = 6,0 с точка движется равнозамедленно. Следовательно, пройденный путь вычисляем по формуле

x (t 1) = x 0 + 9,0 t 1 − 0,75 t 1 2 = x 0 + 9,0 ⋅ 4,0 − 0,75 ⋅ (4,0) 2 = (x 0 + 24) м.

Таким образом, путь S1, пройденный материальной точкой в указанном интервале времени, равен:

S 1 = | x (τ ост) − x (t 1) | = | (x 0 + 27) − (x 0 + 24) | = 3,0 м.

В интервале времени от τост = 6,0 с до t2 = 7,0 c точка движется равноускоренно. Следовательно, пройденный путь вычисляем по формуле

x (τ ост) = x 0 + 9,0 τ ост − 0,75 τ ост 2 =

X 0 + 9,0 ⋅ 6,0 − 0,75 ⋅ (6,0) 2 = (x 0 + 27) м;

x (t 2) = x 0 + 9,0 t 2 − 0,75 t 2 2 =

X 0 + 9,0 ⋅ 7,0 − 0,75 ⋅ (7,0) 2 = (x 0 + 26,25) м.

S 2 = | x (t 2) − x (τ ост) | = | (x 0 + 26,25) − (x 0 + 27) | = 0,75 м ≈ 0,8 м.

S = S 1 + S 2 ≈ 3,0 + 0,8 = 3,8 м.

Пример 3. Тело движется по прямой и в начале пути имеет скорость 3 м/с. Пройдя некоторое расстояние, тело приобретает скорость 9 м/с. Считая движение тела равноускоренным, определить его скорость на половине указанного расстояния.

Решение. В условии задачи нет указаний на время движения тела. Поэтому для вычисления пройденного пути целесообразно воспользоваться формулой, не содержащей время движения, т.е.

01 pict 002

Запишем указанную формулу дважды:

S 1 = v 2 − v 0 2 2 a ;

где v 0 = 3 м/с; v к = 9 м/с.

Отношение уравнений дает равенство

позволяющее вычислить величину искомой скорости:

Источник

Думать за всех. Разбираем типичные ошибки водителей грузовиков 16:51, 16 ноября 2020 Версия для печати

lg dt7ffvjm

Вождение грузовика имеет ряд особенностей, которые не всегда понятны рядовому водителю. Что делать, чтобы не попасть в ДТП с грузовиком? Как понять, что он таит в себе потенциальную опасность? Разберем несколько примеров, которые добрые люди засняли на свои регистраторы.

Наверное, было бы интереснее выбрать только те ситуации, о потенциальном возникновении которых водители легковых автомобилей даже не догадываются. Сделать этакий шок-контент в формате «Сосед избежал ДТП, рассказываю, как он это сделал». Но это было бы не совсем правильно с практической точки зрения. Поэтому поставим задачу иначе: не шокировать, а попытаться предупредить реальные ДТП, напомнив о наиболее опасных ситуациях на дороге с участием грузового транспорта. Некоторые примеры покажутся банальными, но бог с ним. Главное — чтобы это было полезно.

Я тебя не вижу

Начнем с самого простого — со «слепой» зоны справа от кабины. О том, что на многих грузовиках из-за руля не видно, что происходит в этой зоне, многие знают. Поэтому подробно останавливаться на данной ситуации не будем, но не вспомнить это видео просто невозможно. Хотя бы с одной целью — поржать (внимание — ненормативная лексика!).

Мем смешной, но ситуация, конечно, страшная. И до абсурда типичная. Как в эту зону лезли, так и лезут, а мамы потом вынуждены вызывать гаишников. Вот как это выглядит со стороны.

В общем, без комментариев. Не хотите быть убитым фурой или орать в истерике — помните об этой зоне.

Впрочем, есть зона еще опаснее. Как ни странно, она находится прямо перед капотом грузовика (даже если он бескапотный). Смотрим видео.

В этой ситуации надо разобраться чуть подробнее. Часто в нее попадают как раз справа — выезжая из одной «мертвой» зоны, попадают в другую. Если после серии таких маневров легковушка оказывается на минимальном расстоянии от кабины грузовика, водитель последнего даже не всегда почувствует, что уперся в какой-то автомобиль и потащил его перед собой. Бывало, что тягач толкал машину больше двух километров — дорога была пустая, посигналить некому, а бедолага в легковушке ничего сделать сам не мог.

Вывод простой: никогда не пытайтесь встать справа или справа/спереди около кабины грузовика.

Да, сейчас у водителей очень многих тягачей стоит большое количество зеркал для контроля этих зон, но есть и те, кто их не имеет или забывает ими пользоваться. Если перестраиваетесь перед грузовиком, старайтесь сами увеличить дистанцию — так шофер гарантированно заметит вашу легковушку перед собой.

К сожалению, в подобных ДТП страдают не только машины, но и пешеходы. Наверняка многие вспомнят жуткую историю про мать, которая буквально затолкала коляску с ребенком под КАМАЗ в Екатеринбурге. Вот похожая ситуация в подмосковных Люберцах. Правда, тут детей под грузовик затащила бабушка.

Мне не хотелось бы говорить что-то плохое про матерей, на глазах которых погибли их дети (в первом случае — трехмесячный ребенок в коляске, во втором, на видео, — пятилетняя внучка женщины), но вина в этих трагедиях лежит на них. Во всяком случае, так говорят и здравый смысл, и следствие, в ходе которого мать из Екатеринбурга была признана виновной в смерти собственного ребенка. Ну, о правовых вопросах говорить не будем, но факт остается фактом: о «слепых» зонах помнить нужно всегда. И имейте в виду: чаще всего жертвами среди пешеходов в этих ситуациях становятся дети и люди пожилого возраста.

Хорошо стоим!

Теперь перейдем к менее очевидной, но тоже очень распространенной ситуации. Но сначала — немного физики.

Кто скажет, как зависит тормозной путь автомобиля от его массы? Чем тяжелее машина, тем больше путь? А вот и нет. Трудно поверить, но тормозной путь вообще никак не зависит от массы. Сейчас попробую это объяснить.

5ave38wz

Торможение — это отрицательное ускорение. Ускорение можно рассчитать по второму закону Ньютона: F = ma, откуда a = F/m, где а — искомое ускорение, F — сила, действующая на тело, а m — его масса. Ну, с массой все понятно. А что насчет силы F?

На автомобиль действуют несколько сил. Вниз его прижимает сила тяжести (mg, где g — ускорение свободного падения, равное 9,81 м/с2), снизу на колеса вверх давит сила реакции опоры N. Эти две силы себя взаимно компенсируют, то есть N = mg (иначе машина бы провалилась вниз или улетела в небо).

Остается только одна сила, направленная против движения, — сила трения (Fтр). Ее вычисляют по следующей формуле: Fтр = μN, где μ — коэффициент трения, а N — та самая сила реакции опоры. А N, как мы выяснили выше, это не что иное, как mg. И в итоге сила трения у нас равна: Fтр = μmg. Вроде пока все понятно.

Теперь в самую первую формулу ускорения a = F/m вместо безликого F подставим полученную нами силу трения Fтр, которая, как выяснилось, равна μmg. Получается такое выражение: а = μmg/m. Тут же сокращаем массу m и получаем, что ускорение можно рассчитать по формуле а = μg. А так как ускорение в нашем случае — это то же самое замедление, но с обратным знаком, то оно никак не зависит от массы. Вообще никак. Есть только коэффициент трения и ускорение свободного падения.

В автошколе нас учат, что тормозной путь зависит от квадрата скорости, про массу ничего не говорят (на экзамене даже есть один вопрос в билете на эту тему). Это действительно так, но, наверное, не стоит превращать наш материал в урок физики (хотя это интересно).

0gfypaig

И все же при этом все знают, что в реальной жизни легковой автомобиль почти всегда остановится быстрее грузового. Однако с массой машин это никак не связано, а связано с конструктивными особенностями тормозов. На легковых машинах привод тормозов гидравлический, на грузовиках чаще встречается пневматический или комбинированный (как правило — пневмогидравлический). Так вот, время срабатывания гидравлических тормозов составляет около 0,1–0,4 секунды, а пневматических — до 1,4 секунды (если в качестве примера взять тягач с полуприцепом). За разницу — приблизительно 1 секунду — на скорости 60 км/ч грузовик проедет почти 17 м. Поэтому путать остановочный и тормозной пути нельзя — это разные вещи. К сожалению, водители легковых машин об этом часто забывают. Смотрим видео.

На первый взгляд, ситуация спорная. Вроде бы водитель фуры ехал слишком быстро, не рассчитал скорость и дистанцию, не смог вовремя остановиться и вылетел через пешеходный переход. Но давайте посмотрим на действия водителя белого хэтчбека. Вот он смог накосячить в каждом своем движении. А это уже талант.

Итак, у фуры периодически загораются стоп-сигналы, затем он включает левый поворот. В тот момент, когда «поворотник» уже мигает, малолитражка идет на опережение (чего делать нельзя). При этом она не перестраивается на левую полосу, а движется между полос (еще одна ошибка — водитель не смог оценить ширину проезжей части и правильно расположить на ней ТС). Ну а потом — эпик фейл: водитель постарался побыстрее вернуться на полосу фуры и оттормозиться перед ее носом в такую погоду — это поступок очень мужественный и крайне неумный. Да, водитель решил пропустить пешехода, и это похвально. Но так тормозить перед грузовиком не стоит.

Еще более наглядная иллюстрация неправильной оценки остановочного пути грузовика — ситуация с «учителем», который пытается испугать водителя фуры.

Тут просто классика жанра — непонимание того, из чего складывается остановочный путь. Не забываем: тормозной путь грузовика такой же, как у легкового автомобиля, остановочный — значительно больше.

Универсальный совет один: прежде чем «давать по тискам», будет очень здорово посмотреть в зеркало заднего вида.

В конце концов, водитель большегруза может просто уснуть и не заметить, что поток останавливается на светофоре. В моей практике был такой случай возле Твери: я стал тормозить перед светофором и одновременно следил за КАМАЗом, который шел следом. Он тормозить вообще не думал, хотя нам уже давно горел красный. В конце концов нервишки не выдержали, и я съехал со светофора на обочину. КАМАЗ пролетел на красный. Благо время было около четырех утра и перекресток был пустым. КАМАЗ так и упылил к горизонту. Зачем он так сделал — я не знаю, но до сих пор рад, что смотрел в зеркала.

А что сбоку?

Если про дистанцию еще многие помнят, то про интервал у нас думают редко. А зря. Давайте посмотрим еще одно видео (внимание, ненормативная лексика!).

Сейчас бы еще раз сходить по-маленькому в курс физики, но, думаю, это будет явный перебор. Поэтому перейду просто к цифрам: боковой ветер в 15 м/сек. уже способен положить на бок еврофуру. А 15 м/сек. — это не так уж много. Это даже еще не ураган.

Хорошо, что та ситуация, что показана на видео, в жизни случается не так уж часто. Но при выполнении некоторых условий она очень даже вероятна при гораздо менее серьезном ветре. Итак, почему грузовик был так близок к перевороту?

Обратите внимание на такую деталь: пока справа от фуры есть деревья, она более-менее на дороге держится. Но при выходе на открытое пространство на въезде на мост она очень близка к опрокидыванию. Эх, все-таки придется немного заняться расчетами.

Возьмем средний размер еврофуры: 13,5х2,45 м. Боковая площадь получается 33 кв. м. Неплохой такой парус. Теперь посмотрим, как сильно в этот парус сможет давить ветер. Формула расчета силы на один квадратный метр будет такой: F=0.61V2/9,8, где V — скорость ветра в м/сек., а 0,61 — половина плотности воздуха в нормальных условиях. Допустим, что дунул порыв в 20 м/сек. В таком случае на один метр придется сила в 24,9 кгс, а на 33 кв. м фуры — почти 822 кгс. Почти тонна. Однако все эти расчеты справедливы для статичного положения. В динамике физика намного сложнее, что делает прогнозирование поведения машины более затруднительным. А на практике — более сложным для управления.

k6jfubl7

Вернемся к видео. При выезде из-за препятствия (в нашем случае — деревьев на обочине) ветер не просто подул в бок, а сделал это порывом. А как мы поняли из расчетов выше, сила толчка могла быть очень существенной — в тонну и больше. На дорогах такая ситуация возникает не очень часто. Гораздо чаще переворот провоцируют сами водители. В случае бокового порыва ветра возникает рефлекторное желание поворотом руля вернуть машину на траекторию. И хорошо, если в этот момент ветер еще дует — шансы все сделать правильно есть. Но часто порывы ветра очень кратковременные. Тогда происходит следующее: водитель рулем компенсирует давление порыва, но в этот же момент порыв ветра прекращается. Машина восстанавливает траекторию слишком активно, водитель крутит руль в другую сторону. В этот момент еще один порыв — и грузовик лежит на боку. Остановить такую динамичную раскачку очень сложно.

Да, поездки в таких условиях — не сахар. Но решение есть. Во-первых, в ветер надо сбросить скорость, а при выезде на открытые участки быть готовым к его значительному усилению. А если едете на легковой машине в сильный ветер — подглядывайте за большегрузными соседями по потоку. Если видите, что фура ведет себя нестабильно, ни в коем случае не лезьте на обгон и даже на опережение.

Кроме того, есть еще одно правило. Смотрим этот ролик.

Вот тут как нигде лучше видна типичная ошибка — несоблюдение бокового интервала. Казалось бы: есть между машинами зазор — и ладно. Но в момент проезда фуры рядом с другой машиной между ними возникает разрежение воздуха. И машины пытаются «слипнуться». Пока они идут вдоль друг друга, это чувствуется слабо. Но в конце их начинает затягивать друг за друга. И если кто-то переборщит со скоростью, не учтет вес автомобиля и дорожные условия, он имеет хорошие шансы улететь с дороги. Вот это и произошло на видео.

У ДТП такого рода есть одна очень опасная особенность: встречная машина всегда тянет на свою, то есть на встречную, полосу.

Лишним боковой интервал не бывает, а при разъезде со встречной фуре на гололеде — тем более.

Туда-сюда

Следующие две ситуации могут возникнуть и с легковым автомобилем, но в случае с фурой последствия будут тяжелее в силу уникального умения полуприцепа (и прицепа тоже) «складываться». Речь идет о затяжных подъемах в снег и гололед.

О причинах неудачного подъема говорить не будем — тут все понятно и похоже на то, что бывает и с маленькими машинками. А вот действия водителей легковых машин стоит обсудить.

Если на скользком подъеме фура остановилась, есть очень большая вероятность того, что даже на заблокированных колесах она покатится вниз. И если обычный автомобиль в большинстве случаев скатывается по наиболее ожидаемой траектории (просто вниз), то тягач с полуприцепом или прицепом почти всегда начнет складываться. Предсказать, в какую именно сторону он начнет это делать, невозможно. Куда он проскользит дальше — тоже нельзя. Любой автомобиль ниже грузовика оказывается в опасности. Как ее избежать?

Во-первых, нужно оценивать состояние дорожного покрытия, и если оно вызывает некоторые опасения — не лезть в гору вплотную за грузовиком. Во-вторых, следить за его скоростью. Если она подозрительно быстро падает, есть смысл попытаться уйти с возможного пути отступления грузовика с подъема. В крайнем случае лучше застрять на обочине, чем быть снесенным фурой.

К сожалению, такого ДТП иногда избежать очень сложно. Особенно если дорога узкая, а фура разворачивается поперек дороги. Если она в таком положении заскользила вниз, поможет только молитва. И то не всем.

Вторая ситуация имеет некоторое сходство с первой и связана со складыванием.

Если понесло легковую машину, то поймать ее до «третьего маха» можно (если, конечно, за рулем не совсем безнадежный водитель). Ну, а с фурой — как повезет. Теоретически это тоже возможно, но поймать прицеп намного сложнее.

Причины происшествия на видео могут быть очень разными. Тут явно было торможение до юза, но зачем оно было таким интенсивным — непонятно. Скорее всего, налицо ошибка водителя. Наряду с такими ошибками причинами могут быть и разрушение шины, и аквапланирование, и просто скользкая дорога.

Что-то советовать тут трудно. Просто повторю еще раз: нужно быть готовым к тому, что фура может перекрыть всю дорогу. И если опасность такого развития событий велика, лучше съехать в кювет или куда-то еще — это будет лучше, чем попасть под полуприцеп, который — кто его знает, что там внутри! — может весить тонн 20.

А вот некоторых неприятностей можно избежать. Например, если внимательно следить за всеми участниками движения.

Очевидно, что водитель либо уснул, либо ему стало плохо за рулем. Сейчас, когда за отсутствие тахографов и карт жестоко наказывают, спят за рулем чуть меньше, хотя многие все равно умудряются нарушать режим отдыха (капитализм — штука жестокая). И если фура не очень уверенно придерживается полосы или даже выходит из нее — это очень опасный признак. Обгонять и опережать ее опасно, но если рискнете — попробуйте привлечь внимание водителя сигналом. Возможно, спасете кому-нибудь жизнь.

Мы не стали затрагивать некоторую специфику, знакомую профессиональным водителям (особенности распределения и крепления груза или поведение тягача с прицепом в колее) или совсем уж банальные вещи вроде безопасного обгона. Понимаем, что каждый из нас — водитель от бога. Но если вы узнали из этого материала что-то новое или он заставил о чем-то подумать, мы будем этому очень рады. Потому что дорога — это красиво, но опасно, и лично мне очень хотелось бы, чтобы таких видеороликов в интернете было меньше. А для этого их надо смотреть, анализировать и помнить, что не все едут одинаково. У тягачей и самосвалов свои особенности, у спорткаров — другие. Но на дороге равны все, и полезным будет знать кое-что и про тех, и про других. Глядишь, когда-нибудь и пригодится.

Фото и видео фотобанк Лори и из открытых источников

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто