Генератор на колесо авто

Идея «Самодельный гибрид». Обсуждаем

a521c4ds 100

da31569s 960

Приветствую всех заинтересованных!
Долго метался в какое же сообщество написать, в кулибиных пацаны больше по мангалам да по сварке (хотя тоже бы пригодилось), в электронных поделках тоже могут не понять, в итоге решил написать в своё)))
Хотел бы обсудить одну идею которая давно крутится в моей больной голове.
Суть идеи состоит в дооборудовании автомобиля с ДВС электродвигателем, по сути создание гибрида. Вы сейчас скажете, что такое уже изобретено, купи Приус и езди на нём спокойно, но нет! Во-первых идея не в экономии топлива (хоть такой эффект и будет однозначно), а увеличении мощности при одновременной работе двух двигателей, а во-вторых у меня «восполение юного инжененра» и его надо как то реализовать, для начала хотя-бы в обсуждении))
Концепция: заднеприводный (полноприводный) автомобиль, в разрез карданного вала устанавливается электродвигатель, аккумуляторная батарея находится в багажнике, там же установка для её зарядки от сети, ну и контроллер работы двигателя, который в зависимости от скорости автомобиля и процента нажатия на педаль газа задает определенный режим электродвигатею, при нажатии на педаль тормоза включается рекупирация, при включении заднего хода установка полностью отключается. При разряде аккумулятора автомобиль превращается в обычный с небольшим грузом в багажнике.
Коплектующие:
-батарею можно сделать из обычных 18650 как в тесле))
-контроллер на этапе макета можно запилить на основе ардуино
— а вот что делать с двигателем пока не придумал, ведь он должен быть грязи-влагозащищенный, да ещё и противоударный с обоих сторон должны быть фланцы для соединения с КПП и карданом. Где такой взять в заводском исполнении?

Для начала собрать всю эту конструкцию можно на базе какого нибудь жигуля или лучше старого пруля (что предпочтительнее, так как есть штатно установленные датчики АБС и электронная педаль), который не так жалко пилить, варить, сверлить и т.д.

Хочу услышать ваши мысли по поводу реализации этого этой идеи (проекта)
Кому не интересно прошу не лить грязь в комментарии!

Источник

Уникальное мотор-колесо Шкондина, Дуюнова

d6e50eas 100

Недавно наткнулся на уникальную в своем роде разработку нашего профессора Шкондина, живущего и работающего в г. Протвино МО.
Изучив поверхностно данное Ноу-Хау, я поразился унакальностью этого изобретения. Данное электрическое мотор-колесо может устанавливаться как на скутеры, мотоциклы так и на автомобили. Из-за унакально огромного КПД работы у этого изобретения будет большое будущее в нашей стране (надеюсь что изобретение не будет продано Китайцем или на Запад).

О Мотор-Колесе Шкондина говорят и пишут многие. И часто это происходит на уровне мифов и предположений. Мол, есть такое изобретение, и по многим параметрам оно просто замечательно, а вот как оно работает, практически никто не объяснил. Сам Василий Васильевич Шкондин отсылает всех к своим многочисленным отечественным и зарубежным патентам, где, якобы, всё написано, а если хотите производить такие колеса, то берите лицензии.

О Мотор-Колесе Шкондина в Интернете можно найти ряд интересных статей. Например, «Василий Шкондин – конструктор лучших в мире электровелосипедов». Или познакомиться с информацией о моторе Шкондина по ряду фильмов. Например, по адресу, где можно посмотреть сразу 25 фильмов. Эти же фильмы можно найти в Интернете и по другим адресам. Приведу лишь один из последних фильмов, созданных Старухиным.

Чтобы понять особенности мотор-колеса Шкондина, а проще, говоря, двигателя Шкондина, нужно сравнить его двигатель с конструкцией стандартного двигателя постоянного тока и так называемого бесколлекторного двигателя. Но для начала приведем некоторые данные из патентов Шкондина, а также ряд рисунков, которые позволят понять основные принципы, которые положил Шкондин в основу своего мотора.

Познакомиться с патентами Шкондина можно по указанным адресам, но можно почитать и на моем сайте по адресам здесь и здесь. Сам Шкондин старается позиционировать свой двигатель как мотор-колесо, но при желании этому двигателю можно придать любую форму, сохраняя при этом саму идеологию изобретения. Рассмотрим поближе мотор-колесо Шкондина

1b587eas 960

Итак, имеем статор внутри, и ротор снаружи. На статоре через равные промежутки установлено 11 пар магнитов, полюса магнитов чередуются. Всего полюсов 22. На роторе установлены 6 U-образных электромагнитов, у которых, получается, имеется 12 полюсов. На роторе установлены щетки, с помощью которых подается питание на электромагниты, а на статоре установлен коллектор, с которого электрический ток поступает на щетки. Обращаю внимание на то, что расстояние между полюсами любого электромагнита ротора равно расстоянию между соседними магнитами на статоре. А это означает, что в момент точного «соприкосновения» полюсов одного из электромагнитов с соседними полюсами магнитов на статоре, полюса остальных электромагнитов с полюсами магнитов на статоре не «соприкасаются».

Сдвиг полюсов электромагнитов на роторе и полюсов магнитов на статоре относительно друг друга создает между ними градиент напряженности магнитного поля, а последний как раз и является источником крутящего момента. Для варианта двигателя Шкондина, изображенного на рис.1 получается, что в каждый момент времени крутящий момент создают 5 электромагнитов из 6. Тот электромагнит, полюса которого точно «соприкасаются» с полюсами магнитов на статоре, крутящего момента не создаёт. Получаем своеобразный силовой КПД в 83%. И это при отсутствии притиво ЭДС. А если считать КПД по доле участвующих в создании тяги магнитов на статоре, то получаем, что из 22 магнитов тягу создают 20 магнитов, т.е., 91%.

Пока прошу поверить на слово, что коллектор мотора Шкондина устроен так, что он в нужное время переключает направление тока в обмотках электромагнитов, что обеспечивает тягу только в одну сторону. Можно даже утверждать, что в данном моторе Шкондина работают сразу 6 классических электромоторов. Мотор действительно работает мотором, а не маховиком. В данном моторе на «полную катушку» используется не только мощность электромагнитного поля, но и коллекторно-щеточный механизм. И при этом двигатель устроен удивительно просто. Он состоит всего из 5-6 основных деталей. Создав для этих деталей точные матрицы, можно штамповать двигатели Шкондина миллионами.

«Импульсно-инерционный электродвигатель, в соответствии с настоящим изобретением, содержит: статор с круговым магнитопроводом, на котором закреплено четное количество постоянных магнитов с одинаковым шагом;

ротор, отделенный от статора воздушным промежутком и несущий четное число электромагнитов, которые расположены попарно напротив друг друга;

распределительный коллектор, закрепленный на корпусе статора и имеющий расположенные по окружности токопроводящие пластины, соединенные с чередованием полярности с постоянным источником тока и разделенные диэлектрическими промежутками;

токосъемники, установленные с возможностью контакта с пластинами коллектора, причем каждый из токосъемников подключен к одноименному выводу обмоток соответствующих электромагнитов.

Каждый из электромагнитов имеет по две катушки с последовательно встречным направлением обмотки, причем обмотки катушек смежных электромагнитов соединены последовательно, а выводы обмоток противоположных электромагнитов, не подключенные к токосъемникам, соединены между собой. Количество постоянных магнитов статора, равное n и количество электромагнитов ротора равное m, подбирают таким образом, чтобы они удовлетворяли соотношениям:

n=10+4k, где k — целое число, принимающее значения 0, 1, 2, 3 и т.д.

m=4+2L, где L — любое целое число, удовлетворяющее условию 0 5b587eas 960

3b587eas 960

Рассмотрим последний рисунок. На нём полюса электромагнитов ротора сверху и снизу совпадают с полюсами магнитов на статоре. Эти электромагниты в создании тяги не участвуют, поэтому питание на них не подается. Полюса электромагнитов справа и слева с полюсами магнитов на статоре не совпадают. Поэтому на эти электромагниты питание подается. И именно эти электромагниты создают крутящий момент. И именно на это тратится энергия из аккумулятора.

Обратите внимание, что как правый, так и левый электромагниты сразу взаимодействует с магнитными полями трех соседних статорных магнитов. А это уже типичная магнитная дорожка, которая за счет градиентов в магнитных полях позволяет получить максимальную тягу. Если считать тягу по задействованным электромагнитам, то получаем, что тягу создают 50% электромагнитов, а если по числу задействованных магнитов статора, то получаем, что в создании тяги участвует сразу 60% магнитов. А это уже большой показатель. Т.е., и на примере этой схеме мы убедились, что мотор-колесо Шкондина – это мотор в моторе.

Теперь рассмотрим схему стандартного электродвигателя с подмагничиванием статорных обмоток, взято здесь

bb587eas 960

В этом двигателе всего пара щеток, зато на коллекторе масса контактов, численно равных числу проводников обмотки ротора. В правом верхнем углу показано сечение мотора с неправильным указанием направления токов в проводниках роторной обмотки. Дело в том, что в каждый момент времени ток подается только в пару проводников, значит только в одном проводнике сверху ток течет от нас, а внизу только в одном проводнике ток течет к нам. Остальные секции ротора такого мотора работают как маховик, что не всегда хорошо. Поэтому при запуске за счет необходимости «сдвинуть ротор с места» такие моторы потребляют большой ток из сети или аккумулятора. Либо при выключении такие моторы превращаются в генераторы, так как остановка ротора, обладающего большой механической инерцией, требует длительного промежутка времени.

К сожалению, такие моторы составляют большую часть моторов на постоянном токе в нашей промышленности. И замена электромагнитов статора на сильные постоянные магниты погоды не сделают.

Теперь посмотрим на возможность использования двигателя Шкондина в бесколлекторном варианте. Сам Шкондин получил несколько патентов, где как вариант он рассматривал возможность использования его двигателя без коллектора. Например, на следующем рисунке (рис. 6) показана такая

67587eas 960

В этом случае двигатель Шкондина работает примерно так, как показано на следующей анимации:
vitanar.narod.ru/schkondin3/schkondin3_7.gif

Но есть существенный различия. Если в двигателе на рис.7 магнитное поле вращается синхронно с вращением ротора, заставляя ротор вращаться вслед за вращением магнитного поля, то в двигателе Шкондина такого нет. В двигателе Шкондина «бегущим» является отключение тока электромагнита ротора в тот момент, когда полюса электромагнита ротора устанавливаются напротив полюсов пары магнитов на статоре. При этом в момент отключения тока в таком электромагните в других электромагнитах направление тока меняется на противоположное. Это позволяет в нужный момент или нужном месте заменить «притяжение» полюсов электромагнитов к паре магнитов на статоре на «выталкивание» полюсов электромагнитов от пары полюсов магнитов статора.

Поэтому Шкондин правильно делает своим оппонентам замечание, что подходить к его двигателю с общераспространёнными теориями бесполезно, что обмотки электромагнитов ротора нельзя соединять ни звездой, ни треугольником. Оно и, правда, двигатель Шкондина – это совокупность магнитных дорожек, динамически меняющих свои параметры за счет переключение обмоток электромагнитов в нужное время и в нужном месте. Поэтому и выдает этот мотор результаты, которые обычным моторам и не снились.

Мотор Шкондина – это не маховик, это устройство, которое с высоким КПД использует взаимодействие магнитных полей, параметры которых умело меняются как за счет правильного соотношения между парным числом магнитных полюсов на статоре и числом пар полюсов электромагнитов на роторе, число пар магнитов на статоре больше числа пар полюсов электромагнитов на роторе, правильно сконструированного коллектора или устройства синхронизации в бесколлекторном варианте.

Мотор Шкондина обладает при той же массе и подаваемого на обмотки ротора тока гораздо большей мощностью, чем электромотор стандартной конструкции. Мотору Шкондина конструктивно можно придать любую форму, как в виде колеса (блина), так и в виде цилиндра, наподобие той формы, которую придают существующим двигателям постоянного тока. Это делает такие двигатели подходящими для установки в военную технику самого разного назначения. Эти двигатели можно использовать в космосе. В авиации такие двигатели хорошо подходят для вертолетов, так как они обладают малой инерцией вращения. Значит лопастями с такими двигателя легче управлять, уменьшится вероятность непредвиденных катастроф.

Кроме мотора Шкондин спроектировал и собрал несколько вариантов генераторов по своей схеме. Причем на одно и тоже транспортное средство можно установить и двигатель, и генератор. И когда двигатель будет «тянуть» транспортное средство, генератор будет вырабатывать электроэнергию и с КПД больше 90% и возвращать её в аккумулятор. Наивысшим достижением Шкондина является создание спарки двигателя и генератора, которые дополненные небольшой солнечной батареей или ветряком, практически становится «вечным» двигателем, мощность которого достаточна для обеспечения электроэнергией сельского дома или квартиры.

Так что для меня понятно, почему коляска для инвалидов, собранная Шкондиным, пробегает дистанцию на одном заряде аккумулятора больше, чем аналоги, собранные в других странах. Или почему на электровелосипеде Шкондина можно проехать 50 и более километров на паре аккумуляторов для источников бесперебойного питания, которые мы привыкли использовать для своих компьютеров. Или почему мотор-колесо Шкондина можно использовать для строительства ветрогенератора.

Данная статья написана не как реклама Шкондину, а как попытка разобраться с механизмом работы его двигателя, чтобы немного развеять тот туман, который в последнее время сгустился над этим изобретением. И, похоже, что двигатель Шкондина, как всё гениальное, очень простое устройство.

Можно еще долго вести разговор о достоинствах мотора Шкондина. Но пока к этому делу не проявят интерес государственные чиновники или акулы российского бизнеса, мотор-колесо Шкондина так и останется игрушкой для небольшой группы энтузиастов. В Интернете однажды «вышел» на небольшую статью, что электромобили на зимней Олимпиаде в Сочи созданы на основе моторов Шкондина. У меня есть надежда и уверенность, что к мотору Шкондина проявит интерес Министерство обороны Российской Федерации. И тогда мы, возможно, станем обладателями электровелосипедов или электромобилей, в которых будут установлены двигатели Шкондина. И не только в колесах, но и в системах



Мотор-колесо Дуюнова Мотор-колесо – это электродвигатель, встраиваемый в колесо велосипеда, автомобиля, скутера, мотоцикла и других транспортных средств. Двигатель выполнен на оси, что дает привод колесу без вспомогательных элементов передачи тяги, таких как шестерни или цепь. На данный момент все модели мотор-колес, представленные на рынке, являются BLDC-двигателями и имеют в своей конструкции постоянные магниты, из-за использования которых в производстве, стоимость выпуска мотор-колес высока. Мотор-колесо Дуюнова – одна из самых знаменитых разработок на основе технологии «Славянка». Это первое в мире асинхронное мотор-колесо без использования в конструкции постоянных магнитов, за счет чего обеспечивается снижение на 30% веса и материалоёмкости в сравнении с двигателем со стандартными обмотками, полное импортозамещение и независимость от китайских производителей магнитов. Асинхронное мотор-колесо Дуюнова демонстрирует неоспоримые преимущества над мотор-колесами с постоянными магнитами (BLDC): имеет низкие затраты в обслуживании, хороший накат, экономию электроэнергии до 40%, низкий уровень шума, высокую надежность и длительный срок службы.

Источник

Устройство для выработки электроэнергии от колес автомобиля

Предлагаемое изделие к относится к области автомобильной промышленности в частности к устройствам для выработки электроэнергии от привода ведущего колеса автомобиля.

Устройство для выработки электроэнергии от колес автомобиля содержит статор (1) и ротор генератора (2). Статор (1) генератора выполнен в виде установленной шасси автомобиля (7) скобы с катушками (4), а на тормозном диске (3) установлены магниты (5).

Техническим результатом предлагаемого технического решения является повышение надежности и увеличения срока службы устройства для выработки электроэнергии от колес автомобиля. 2 илл.

Предлагаемое изделие относится к относится к области автомобильной промышленности в частности к устройствам для выработки электроэнергии от привода ведущего колеса автомобиля.

Известно устройство для выработки электроэнергии от привода ведущего колеса автомобиля, содержащее два барабана и электрогенератор, на двух барабанах устанавливается колесо автомобиля, один барабан соединен с электрогенератором, оба барабана и генератор закреплены на переносной станине. [1]

Недостатком устройства для выработки электроэнергии от привода ведущего колеса автомобиля является сложная конструкция, низкая надежность устройства, громоздкость конструкции.

Наиболее близким аналогом по технической сущности и достигаемому эффекту является устройство, содержащее колеса заднего моста, установленные на полуосях. Полуоси установлены в опорах на шарикоподшипниках. Опоры укреплены на мосту. На этом же мосту укреплен статор генератора, а ротор генератора связан с полуосями. Для уменьшения влияния вибраций лучше, если с полуосями ротор генератора будет связан гибким валом. От грязи генератор закрыт защитным кожухом, закрепленным на мосту. На мосту установлены рессоры, связанные с рамой. [2]

Расположение статора и ротора генератора на мосту является дополнительной нагрузкой на полуоси, на привод колес, что приводит к быстрому выходу из строя выше названных узлов транспортного средства. Большой вес конструкции и ее металлоемкость приводят к повышенной нагрузке и вибрации в узлах привода колес автомобиля что также негативно сказывается на сроке эксплуатации автомобиля в целом.

Задачей предлагаемого устройство для выработки электроэнергии от колес автомобиля является получение электрической энергии за счет вращения колес транспортного средства.

Техническим результатом предлагаемого технического решения является повышение надежности и увеличения срока службы устройства для выработки электроэнергии от колес автомобиля.

Указанный результат достигается тем, что в устройстве для выработки электроэнергии от колес автомобиля, содержащем статор и ротор генератора, статор генератора выполнен в виде установленной на шасси автомобиля скобы с катушками, а на тормозном диске установлены магниты.

Выполнение статора генератора в виде установленной на шасси автомобиля скобы с катушками позволяет установить катушки компактно с минимальными установочными размерами. На тормозном диске автомобиля установлены постоянные магниты с чередующейся полярностью. Скоба закреплена на шасси автомобиля или на поворотной части шасси. В случае если это переднее колесо, с чередующимся направлением намотки, выводы катушек соединены последовательно. Катушки располагаются с двух сторон скобы. Тормозной диск вращается между скоб с катушками так, чтобы магниты при вращении проходили между катушками. Вся конструкция имеет компактный размер минимальную металлоемкость и вес, что значительно уменьшает нагрузку на подвеску автомобиля, минимизирует вибрацию, что, в конечном счете, повышает надежность и, как следствие, увеличивает срок службы устройства для выработки электроэнергии от колес автомобиля.

Устройство для выработки электроэнергии от колес автомобиля содержит статор 1 (фиг.1, 2) и ротор генератора 2. Статор 1 генератора выполнен в виде установленной на шасси автомобиля 7 (фиг.2) скобы с катушками 4, а на тормозном диске 3 установлено кольцо 6 (фиг.1) со встроенными в нем постоянными магнитами 5 (фиг.1, 2).

Устройство для выработки электроэнергии от колес автомобиля работает следующим образом. На тормозном диске 3 автомобиля устанавливают кольцо 6 со встроенными в нем постоянными магнитами 5. Магниты 5 могут быть также установлены непосредственно на тормозном диске 3 без использования кольца 6, например, путем запрессовывания в тормозной диск 3 или с помощью крепления известными средствами. Скоба с катушками 4 закреплена на шасси автомобиля 7 автомобиля или на поворотной части шасси (на фигуре не показано), если это переднее колесо с чередующимся направлением намотки, выводы катушек соединяются последовательно. Катушки 4 располагаются с двух сторон скобы. При движении автомобиля вращаются колеса вместе с тормозными дисками 3, постоянные магниты 5 с чередующейся полярностью полярностью, закрепленные на диске 3, проходят между скоб с катушками 4 так, чтобы магниты 5 при вращении проходили между катушками 4 обмоток. Тормозной диск 3 вращается, при движении автомобиля (вращения колеса), магниты 5 с чередующейся полярностью, установленные на тормозном диске 3, проходят мимо катушек 4, возбуждая при этом ЭДС индукции (электродвижущая сила) в обмотках катушек. В катушках 4 возникает электрический ток.

Электрическая ток, полученный с помощью устройства для выработки электроэнергии от колес автомобиля, преобразуется с помощью устройства преобразования (инвертора) и подается в общую сеть автомобиля, электромобиля или гибридного автомобиля (например, подзаряжает аккумуляторные батареи или добавляет мощности тяговому электродвигателю в случае гибридного или электромобиля).

Скобы с катушками 4 можно делать как секционно, (на передних колесах ввиду их поворотах для управления автомобилем), так и в полный круг (например на задних колесах). Применение постоянных магнитов с высокими значениями остаточной индукции и коэрцитивной силы позволяет существенно улучшить электрические характеристики генератор. Вместо постоянных магнитов можно установить электромагниты, в этом случае увеличиться мощность данного генератора, но при этом конструкция станет более сложной.

1. Заявка на изобретение 847098121965 (Федоров Г.А.), 10.05.2000 г., «Устройство для выработки электроэнергии от привода ведущего колеса автомобиля».

2. Патент РФ на изобретение 84702022821 (Керов В.Г.), 15.11.1994 г., «Привод генератора электро и автомобиля».

Устройство для выработки электроэнергии от колес автомобиля, содержащее статор и ротор генератора, отличающееся тем, что статор генератора выполнен в виде установленной на шасси автомобиля скобы с катушками, а ротор генератора представляет собой установленные на тормозном диске магниты.

Источник

На Токе заряженный портал

Мотор-колесо для электромобиля: устройство, плюсы, минусы, известные разработчики — На токе

Мотор-колесо для электромобиля: устройство, плюсы, минусы, известные разработчики

motor koleso dlja elektromobilja ustroistvo plyusy minusy izvestnye razrabotchiki article image big

Идея использования электродвигателя интегрированного непосредственно в колесо электромобиля или гибрида, не нова, и уже давненько разработчики проявляют к ней повышенный интерес, естественно, не просто так. Тут всё дело в том, что подобная конструкция даёт электрокару очень большие возможности. В теме я хочу более подробно рассказать об этом, безусловно передовом изобретении, на которое ведущие производители просто не могут не обратить внимание, уж слишком много выигрышей даёт мотор-колесо электромобилю.

Содержание:

Устройство и преимущества мотор-колеса

screenshot 2020 05 15 motwh1 gif izobrazhenie gif

1. Первое, что сразу начинает понимать более-менее разбирающийся в технике человек — мотор-колесу не требуется большое количество дополнительного оборудования. Отсутствует множество элементов, передающих тягу на ведущие колёса! Какие рядовой обладатель электрокара с мотор-колесом может получить выгоды от такой упрощённой и более совершенной конструкции?

Пониженная за счёт отсутствия ряда компонентов масса электрокара, позволит преодолевать на одном заряде больше километров. Не стоит забывать и о том, что в таком автомобиле будет и меньшее количество трущихся деталей, что также благоприятным образом отразится на пробеге. Подобная техника обойдётся при покупке дешевле и кроме того, её обслуживание и ремонт, также не отберут у хозяина много денег. Ещё чем может порадовать МК, так это надёжностью, ведь устройство электрокара в таком случае отличается простотой и всем давно известно, что чем проще механизм, тем он надёжнее. Отсутствие «лишних» агрегатов, позволило инженерам предоставить больше полезного места для пассажиров и перевозимой поклажи. Кроме того, это даёт возможность дизайнерам и конструкторам применять самые смелые решения.

17260518may

2. Следующее, что нельзя не заметить — превосходная динамика электромобиля оборудованного мотор-колёсами. Компактные и легковесные электромоторы интегрированные в колёса, выдают максимальное значение крутящего момента с первых же оборотов. Показатель тяги может доходить до цифры 700 Нм.

3. Управляемые мотор-колёса делают транспортное средство ими оборудованное очень манёвренным. Причина данного обстоятельства проста: каждое МК может крутиться с разной частотой и в разных направлениях. Авто благодаря такой специфике может развернуться на 360 градусов, припарковаться в стеснённых условиях и практически мгновенно адаптироваться к состоянию дороги.

4. Значительно упрощается устройство очень важной для любого электрокара системы рекуперации.

5. Под МК практически идеально можно подстроить любую систему активной безопасности, которая сможет влиять на колёса индивидуально.

Недостатки мотор-колеса

render 001 a e1341997346135

Казалось бы, устройство практически идеальное — бери и ставь на поток, но, не так всё просто! Имеет место несколько не решённых на данный момент проблем. Основной из них является большое количество механизмов, которые нужно как-то разместить внутри обода. Высокооборотистые электрические двигатели, требуют наличия понижающего редуктора. Он должен обладать скромными габаритами и быть герметичным. Естественно, механизм добавит некоторое количество веса к общей массе мотор-колеса.

Солидная неподрессоренная масса, то есть, слишком тяжёлые колёса, могут негативно повлиять на комфорт и безопасность. К этому можно смело добавлять повышенный износ элементов подвески и передачу на кузов повышенного уровня вибраций. Оптимальная масса мотор-колеса без учёта резины, для среднеразмерного транспортного средства, должна варьироваться в пределах 10-30 килограмм. Вся проблема в том, что разработчикам весьма затруднительно войти в эти жёсткие ограничения.

Мотор-колесо Michelin

1449996500 motor kolesa michelin 1

Данный французский бренд стал популярен во всём мире не только благодаря разработкам высококачественной резины, он ещё прославился тем, что его специалисты занимаются исследовательской деятельностью в области создания экономичного и экологически чистого транспорта. А самое главное, что касается нашей темы, Мишлен уже 15 лет занимается разработкой инновационных мотор-колёс предназначенных для электрокаров. Изделия «Michelin active wheel» в составе своей конструкции имеют тяговый электромотор, компоненты управления, элементы подвески, а также тормозной системы. Такие высокотехнологичные приспособления можно устанавливать как на передней оси электромобиля, так и на задней.

Общая масса такой конструкции не более 35 кг, что является вполне приемлемым результатом. Основной упор инженеры делали на миниатюрный электродвижок собственной разработки, который является сегодня на рынке самым компактным агрегатом подобного типа. Небывалое соотношение его мощностного потенциала к его весу, предоставляет конструкторам уникальную возможность снизить неподрессоренную массу ходовой части средства передвижения. В принципе, подобной затеей задавались и другие производители с мировым именем, к примеру Mitsubishi и Siemens, однако их проекты так и не дотянули до массового производства.

Мотор-колесо Protean Electric

3b9d6f1e4d15f1370b7e2f845af41d85

Казалось бы, МК для электромобилей имеет все шансы стать массовым продуктом, предлагая потребителю большое количество преимуществ. Однако многие разработчики так не посчитали и столкнувшись с непреодолимыми конкретно для них техническими трудностями, решили отказаться от подобных проектов. Жаль конечно, но, остались и энтузиасты, например в лице американской фирмы Protean Electric, которая уже очень близко подошла к созданию практической конструкции.

Их система называется Protean Drive, она была успешно испытана на таких машинах как Volvo C30, Mercedes-Benz SLS AMG Coupe, Vaxhaull Vivaro, а также Ford F-150. В конце 2012-го года, авторитетное заокеанское издание Car and Driver, внесло изобретение Protean Drive в десятку самых перспективных технологий 2013-го года. По ходу работы над многообещающим проектом, было оформлено 23 патента! Рабочий образец инженеры показали в апреле 2013-го года.

МК Protean Drive предназначается для эксплуатации на электрокарах и гибридах. Технология может быть легко адаптирована к уже производимым моделям либо может применяться для переоборудования транспортных средств с ДВС в гибридные модификации. Система позволяет организовать автомобилю любой тип привода: передний, задний и на все четыре колеса. Комплект состоит из электродвигателя, инвертора и блока управления с ПО. Всё это богатство непринуждённо вмещается внутри обычного 18-24-дюймового колеса. Protean Drive даёт возможность повысить энергетическую экономичность больше чем на 30%, в зависимости от возможностей АКБ и режима движения.

Разработка Protean Electric предлагает весьма привлекательные показатели удельной мощности — 110 лошадиных сил и тяги — 800 Нм. При таких показателях, оборудование имеет массу всего 31 кг. Устройство превосходит другие разработки и по возможностям рекуперации: для подзарядки аккумулятора используется до 85% энергии торможения. Естественно, данное обстоятельство положительным образом влияет на дальность пробега на одном заряде, конкретно, речь идёт о 30-процентном увеличении преодолеваемой дистанции.

Отечественные разработчики мотор-колёс

4ao 1csru0a

Не обошла стороной данная идея и инженеров из России — Дуюнова и Шкондина. Оба уже наделали много шума в Интернете. Но к сожалению, не на техническом совершенстве их изобретений делают акцент пользователи (хвалят в основном они сами себя), а на попытках надуть народ. На форуме есть несколько статей этому посвященных:

Но как бы там не было, почитать о подвигах кулибинов интересно, тем более, что оба постоянно угрожают технической революцией.

Нельзя упустить из виду тот факт, что в 2017-ом году был представлен прототип компактного ситикара оборудованного двумя парами мотор-колёс Дуюнова. Концепцию мини-кара разработал сам Дмитрий Дуюнов и транспортному средству было дано два рабочих названия: Zetta и ElPanda. Каждое мотор-колесо выдаёт мощность 18,1 kW, итого, получается 72,4 kW, а в переводе на лошадиные силы — это 98 лошадок, что для такого автомобильчика весьма солидной цифрой является. Про крутящий момент и говорить нечего, он у этого маленького аппарата подобен суперкару оборудованному ДВС — в сумме 800 Нм! В качестве источника питания, выступают Li-ion аккумуляторы ёмкостью 10 кВт·ч, которых, если верить предоставленной разработчиками информации, должно хватить на обеспечение 200 км пробега на одном заряде.

2680264may

2680266may

Машина построена на масштабируемой архитектуре и может увеличиваться до любых размеров. Кузов представляет собой сварную раму, изготовленную из стеклопластиковых панелей. Масса авто составляет 820 килограмм, однако применение алюминия, позволит снизить вес до 555 килограмм.

В конце 2018-го года, во Всемирной паутине всплыли изображения новой версии, которая получила название «Zetta Модуль 2». Внешний вид миниатюрной машинки был преобразован, однако технические характеристики деятели оставили без изменений.

3019052may

3019054may

Ожидается, что электрокар будет поставляться потребителю в нескольких комплектациях пассажирской модификации. Компоновка возможна как переднеприводная, так и полноприводная. На данный момент проект находится на стадии опытно-промышленного производства и ожидает сертификацию. В год планируется выпускать более 10 тыс. единиц Zetta. Однако на территории РФ будет оставаться только половина этих электрокаров, остальная же партия предназначена для экспорта. Себестоимость продукции пока не разглашается.

3019060may

3019058may

Заключение

Простота и эффективность мотор-колеса для электромобиля не может не привлекать внимание разработчиков со всего мира, постоянно стремящихся сделать своё оборудование более совершенным. Конечно, как и любое оснащение, мотор-колесо имеет недостатки, но всё равно, некоторые специалисты делают на него ставку и в будущем, скорее всего эти минусы будут сведены к минимуму. При этом очень приятно, что в этой области преуспели и российские изобретатели. Глядишь, не сегодня-завтра, народ будет колесить по городским улицам на суперсовременных, высокотехнологичных и доступных для широких масс электромобилях отечественного производства!

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто