Где применяются машины постоянного тока

Содержание

Машины постоянного тока – все, что нужно знать об этих устройствах

elektrodvigatel postoyannogo toka

Несмотря на то, что переменный ток активно применяется человеком в быту и на различных производствах, машины постоянного тока, несмотря на некоторую ограниченность, до сих пор активно применяются в различных сферах деятельности человека. Суть работы данных агрегатов одна – преобразование механической энергии в электрическую, и наоборот.

Сегодня мы расскажем вам много интересного про эти уже давно изобретенные агрегаты, которые до сих пор практически ни в чем не изменились.

Особенности двигателей постоянного тока

postoyannogo toka mashina promyshlennaya

У двигателей постоянного тока есть одно неоспоримое преимущество перед аналогами, работающими на переменном токе. Эти агрегаты могут плавно и точно регулировать свою скорость вращения, у них высокое быстродействие, а также они обладают большими перегрузочными и пусковыми моментами.

Сегодня их используют в основном в следующих отраслях:

mashina postoyannogo toka dvigatel trolleybusa

Как устроены машины, работающие на постоянном токе

Электрические машины постоянного тока являются обратимыми устройствами, то есть они при определенном подключении могут использоваться либо как двигатель, либо как генератор тока.

ustroystvo mashin postoyannogo toka generator v r

На картинке выше показано классическое строение такой машины:

kommutatsiya v mashinah postoyannogo toka

Совет! Пункты 4 и 5 являются частями статора – неподвижной электрической части машины, которая может выступать в роли мощного электромагнита (режим двигателя) или обмотки индуктирующей напряжение (генераторный режим).

Интересно знать! Никакой двигатель не может преобразовывать энергию без потерь – ее часть всегда уходит в тепло.

kollektornye mashiny postoyannogo toka

Помимо этого конструкция имеет центральный вал вращения, который почему-то на схеме не отмечен, и иногда лапы – петли, через которые агрегат можно закрепить к столу, например.

45 2

ustroystvo mashiny postoyannogo toka yakor raspol

Остальные элементы относятся к механической части.

kommutatsiya toka v mashinah postoyannogo toka

Сам якорь имеет следующее строение:

ustroystvo i printsip deystviya mashiny postoyanno

Интересно знать! Контакт коллектора и щеток устроен таким образом, чтобы концы одной обмотки никогда не могли коротко замкнуться.

na etom foto horosho vidno kak k plastinam kollekt

Идем дальше – на очереди щеточный аппарат:

schetki v otlichnom sostoyanii

При вращении ротора, между щетками и коллектором возникает искрение. Если оно будет слишком сильным, то возможно даже образование дугового разряда, что приведет к короткому замыканию и выходу агрегата из строя. Чтобы этого не произошло, и применяются дополнительные полюса обмотки.

На корпусе машины располагаются клеммы для подключения внешних цепей, а также паспортные данные.

Классификация машин постоянного тока

kakimi mogut byt generatory postoyannogo toka

Способы возбуждения машин постоянного тока и включения главных полюсов делят машины на разные типы.

Выделяют следующие варианты:

Принцип работы на примере двигателя постоянного тока

printsip deystviya mashiny postoyannogo toka

Давайте посмотрим, как работает двигатель постоянного тока с параллельным возбуждением.

izmenenie eds vo vremeni pri vraschenii yakorya

Рабочие моменты

Давайте разберем некоторые характеристики и особенности машин постоянного тока.

Пуск и режим реверса

k elektricheskomu dvigatelyu podklyuchen regulyato

В момент, когда двигатель запускается, якорь имеет неподвижное положение, а значит, ЭДС в нем равна нулю. Из-за того, что сопротивление якорной обмотки очень маленькое, пусковой тока якоря намного превышает номинальный. Если представить себе такой пуск двигателя, то он однозначно бы вышел из строя.

Интересно знать! Одновременное изменение направления токов ни к чему не приведет, двигатель продолжит вращаться в том же направлении.

Потери мощности и КПД

dazhe samyy tehnicheski sovershennyy dvigatel post

Любой двигатель или генератор постоянного тока работает с потерями мощности. Их делят на два типа: основные и добавочные.

poteri neznachitelny pri otsutstvuyuschey nagruzke

Интересно знать! Потери мощности при работе в холостом режиме, то есть без нагрузки, крайне малы.

Для расчета каждого типа потерь применяются специальные формулы. Мы не будем так глубоко вдаваться в суть, а скажем лишь, что КПД машины постоянного тока определяется отношением отдаваемой мощности, к потребляемой. Выражают данное значение обычно в процентах.

Современные машины постоянного тока стали очень эффективными. КПД у них обычно варьируется в пределах 75-90%.

Рабочие характеристики

rabochie harakteristiki dpt

Рабочие характеристики представляют собой следующие зависимости:

Все эти параметры позволяют говорить о свойствах двигателей в режиме эксплуатации, а также находить оптимальные и экономичные режимы их работы.

Регулировка скорости вращения двигателя

printsipialnaya shema regulyatora oborotov vrasche

Регулировать скорость вращения машины постоянного тока можно тремя способами: изменение напряжения сети, реостатное регулирование, изменение магнитного потока. Давайте обо всем по порядку.

Конечно, мы назвали не все характеристики машин постоянного тока, а лишь основные, но для ознакомления с этими агрегатами этого вполне достаточно.

Видео в этой статье продемонстрирует, как работают данные устройства.

Источник

мтомд.инфо

Машина постоянного тока представляет собой электрическую машину с механическим преобразователем частоты в цепи якоря и поэтому имеет обращенное исполнение.

Устройство и назначение машин постоянного тока

Обмотка возбуждения 3 располагается на статоре, а обмотка якоря 5 — на роторе. Преобразователь частоты выполняется в виде коллектора 7, пластины которого электрически связаны с обмоткой якоря. Система неподвижных щеток 6 обеспечивает связь вращающейся обмотки якоря с внешней сетью.

Схема машины постоянного тока

machine posttokСтатор обычно выполняется в виде массивной станины 1, на которой укрепляются полюсы 2 с обмоткой возбуждения. Сердечники полюсов собираются из листов конструкционной стали толщиной 1-2 мм.

Магнитопровод якоря 4 набирается из лакированных листов электротехнической стали толщиной 0,5 мм. В пазы магнитопровода укладываются изолированные секции двухслойной обмотки якоря. Выводы секции припаиваются к коллекторным пластинам, закрепленным на валу машины постоянного тока. Число коллекторных пластин равно числу секций. Коллекторные пластины изготавливаются из меди и изолируются друг от друга и от вала с помощью миканитовых прокладок. На внешней поверхности коллектора устанавливаются угольные щетки, закрепленные в щеткодержателях неподвижно относительно статора. Число щеток равно числу полюсов.

Положение щеток относительно полюсов может меняться, но, как правило, щетки устанавливаются на геометрической нейтрали — линии, перпендикулярной оси магнитного поля полюса. В этом случае процессы преобразования энергии в машинах постоянного тока аналогичны процессам преобразования в синхронных машинах при чисто активной нагрузке. Машины постоянного тока применяются как в качестве электродвигателей, так и в качестве генераторов.

Области применения машин постоянного тока

Двигатели постоянного тока, в отличие от двигателей переменного тока, обладают хорошими регулировочными свойствами и могут иметь механические характеристики n = f(Mвн), удовлетворяющие требованиям большинства рабочих механизмов. Поэтому двигатели постоянного тока широко используются на транспорте (магистральные электровозы, тепловозы, пригородные электропоезда, метрополитен, трамваи, троллейбусы), в станках, прокатных станах, кранах, судовых установках. В подавляющем большинстве автомобилей, тракторов, самолетов и других летательных аппаратов двигатели постоянного тока приводят во вращение все вспомогательное оборудование.

Постоянный ток для питания двигателей получают либо с помощью полупроводниковых выпрямительных установок, преобразующих переменный ток в постоянный, либо с помощью генераторов постоянного тока. Генераторы постоянного тока используют также в технологических процессах для питания электролизных и гальванических установок. Широкое распространение получили генераторы постоянного тока специального назначения (сварочные генераторы, генераторы для освещения поездов, электромашинные усилители постоянного тока, возбудители синхронных машин).

Недостатком машин постоянного тока является их относительно высокая стоимость, а также наличие скользящего контакта между щетками и коллектором. В последние годы в связи с развитием полупроводниковой техники ведутся работы по замене механического коллектора полупроводниковым преобразователем. Однако, несмотря на большие усилия, направленные на создание полупроводниковых преобразователей частоты, электроприводы с такими преобразователями оказываются в 1,5 — 2,5 раза тяжелее и дороже электроприводов с двигателями постоянного тока. Поэтому выпуск машин постоянного тока не сокращается, и они находят все новые области применения.

Источник

Электрические машины постоянного тока

Электрические машины постоянного тока (МПТ) имеют широкий спектр применения, поскольку особенности конструкции позволяют использовать их как в качестве эффективного генератора, так и в роли двигателя.

Наиболее часто такие устройства применяются для приводов:

Подобные электродвигатели характеризуются хорошими регулировочными свойствами, а также показателями перегрузочной способности.

17054 1

Конструкция машин постоянного тока

Электрические машины постоянного тока – аппараты, которые преобразовывают механическую энергию в электрическую, а также осуществляют обратные преобразования.

Говоря в общем, данное оборудование состоит из следующих частей: статической (индуктор) и подвижной (якорь).

17054 2

Выделяют следующие элементы электрической машины:

Пункты 1-2 относятся к индукторам, остальные – к якорю.

Важно отметить и тот факт, что среди полюсов проведена геометрическая нейтраль. Она нужна для размещения контактных щеток и для обеспечения наличия нулевой ЭДС.

17054 3

Как работает электрическая машина постоянного тока

Как было отмечено ранее, поддерживается два основных рабочих режима, в которых МПТ может функционировать: двигательный и генераторный.

Каждый из них имеет свои особенности функционирования:

Некоторые виды МПТ могут выполнять функции трансформаторов, преобразователей напряжения.

Электрические машины постоянного тока характерны тем, что их конструкция включает в себя коллектор и скользящий контакт.

Перспективы развития электрических машин постоянного тока

Статистически данные указывают на то, что наиболее часто различные виды электрических машин можно встретить именно в потребительском секторе.

17054 4

Это объясняется тем, что подобные устройства присутствуют почти во всех сферах жизни человека. Наиболее ярким примером являются системы управления легковых автомобилей. Изменение положения сидений, открытие окон, работа дворников – все это микроэлектромашины переменного тока.

17054 5

Несмотря на то, что наиболее активно устройства такого рода разрабатываются для промышленных и оборонных целей, в последнее время все больше начали подниматься вопросы оптимизации и улучшения показателей микромашин.

Электрические машины переменного тока

В современном мире электричество играет ключевую роль, и поэтому электрические машины переменного тока очень популярны среди предпринимателей.

Чаще всего об разновидностях и характеристиках электрических машин узнают из докладов на выставках, проходящих в ЦВК «Экспоцентр», или от представителей компании — мы же предлагаем вам не ждать удобного случая и просто прочитать обзорную статью.

Классификация электрических машин переменного тока

Современная классификация выделяет три основных вида электрических машин:

Наибольшее признание и, как следствие, распространение получили первые два типа двигателей — именно они, благодаря правильному балансу характеристик, широко используются на различного рода производствах и предприятиях.

Коллекторные электрические машины не так распространены, но и у них есть свое преимущество — с их помощью гораздо удобней регулировать скорость, в то время как асинхронные электрические машины переменного токатаким свойством похвастаться не могут.

Впрочем, коллекторные электрические машины сами по себе являются довольно сложным оборудованием (а это приводит к дополнительным затратам на их производство, из-за чего цена значительно отличается от цены на первые два вида электрических машин), поэтому широкого распространения они пока не получили.

Демонстрация электрических машин постоянного и переменного тока на выставке

Выше мы уже упоминали про ЦВК «Экспоцентр» и те выставки, которые периодически проводятся в его павильонах.

Если вы серьезно подходите к делу и хотите получать максимальную прибыль от своего производства, постарайтесь не пропускать подобные мероприятия — даже за один день вы вполне можете посетить все интересующие вас стенды и даже назначить деловую встречу потенциальному партнеру.

Отдельно хочется выделить выставку «Электро», которая будет проводиться в Москве в «Экспоцентре». Уже сейчас можно посмотреть результаты прошлогодней выставки и решить, хотите ли вы тратить время на подобные мероприятия. Заявки на участие принимаются уже сейчас — рассматриваются они в обычном порядке и принимаются согласно регламенту.

Все выставочные стенды будут размещены в нескольких павильонах. Чтобы быстро сориентироваться, лучше посмотреть специально составленную карту на официальном сайте выставки — на ней отмечены все необходимые места.

Если у вас есть время, можно пройти на форум. Он находится чуть дальше павильонов со стендами, и там нет никаких технических приспособлений.

В специально оборудованных залах постоянно проходят лекции ученых и разработчиков, известных в конкретной области.

Список выступающих и точное расписание лекций и докладов также доступны на официальных сайтах выставок, так что вы вполне можете спланировать свое расписание, чтобы посетить все интересующие вас события в рамках одной выставки.

Также на сайте можно найти список компаний производителей и поставщиков электрического оборудования и машин постоянного и переменного тока, которые в этом году будут представлять свои стенды.

Обычно список огромен — на международные выставки приезжают не только отечественные производители, но и представители стран Европы. Отдельным пунктом выделяют те компании, которые впервые приезжают на выставку — знакомство с ними может вас удивить.

Источник

userinfo v8masterok

Мастерок.жж.рф

Хочу все знать

0 d3a19 fa4fd6cc XL

Дорогие мои читатели, начинаем разбирать темы августовского стола заказов (боже мой, как быстро летит время!). Сегодняшняя тема может быть мало кого заинтересует, зато если кого заинтересует, так это будет очень в пользу им. Слушаем trudnopisaka: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой, если разобрать один из электродвигателей, то там много деталей, назначение которых не очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.

Томас Дэвенпорт — американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.

В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.

В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы — всё это используется в быту и оснащено электродвигателями.

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.

0 d3a36 bedfea0e XXXL

Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.

Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.

Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).

Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.

Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса.

Рис. 2. Упрощенное изображения коллектора

Рис. 3. Выпрямление переменного тока с помощью коллектора

Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.

В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.

В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка — неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку — гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история. ВОТ ТУТ можно прочитать про него подробнее.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.

0 d3a2d 2e13f33 XL

Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

В настоящее время двигатели постоянного тока независимого возбуждения, управляемые тиристорными преобразователями, используются в промышленных электроприводах.’Эти при­воды обеспечивают регулирование скорости в широком диапазо­не. Регулирование скорости вниз от номинальной осуществляется изменением напряжения на якоре, а вверх — ослаблением потока возбуждения. Ограничения, по мощности и скорости обусловлены свойствами используемых двигателей, а не полупроводниковых приборов. Тиристоры могут соединяться последовательно или па­раллельно, если они имеют недостаточно высокий. класс по напря­жению или току. Ток якоря и момент ограничены перегрузочной способностью двигателя по нагреву.

Принцип работы:

Сборка двигателя постоянного тока ПО ДЕТАЛЯМ:

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто