Движение автомобиля описывается уравнением s 6t 5t2 ускорение автомобиля равно м c2
При прямолинейном движении зависимость координаты тела x от времени t имеет вид:
Чему равна скорость тела в момент времени t = 2 c при таком движении? (Ответ дайте в метрах в секунду.)
При равноускоренном движении зависимость координаты тела от времени в общем виде следующая:
Сравнивая с выражением, данным в условии, получаем, что проекция начальной скорости равна а ускорение Таким образом, скорость тела в момент времени равна
Скажите пожалуйста, как вы нашли а? (а=v/t)
Самый просто способ нахождения ускорения по известному закону изменения координаты со временем — описан в решении. Нужно сравнить конкретный закон с общей формулой для равноускоренного движения. Коэффициент при — это половина ускорения.
Если Вы хорошо ориентируетесь в дифференциальном исчислении, то можно поступить следующим образом: ускорение — это вторая производная координаты по времени. Имеем
,
что-то не могу понять никак
Давайте еще раз, более подробно.
Внимательно смотрим на данный нам в задаче закон изменения координаты со временем
Замечаем, что координата квадратично зависит от времени, вспоминаем, что это характерно для движения с постоянным ускорением. Выписываем общую формулу для координаты при таком движении.
Здесь — начальное положение тела в момент времени ; — начальная скорость; — ускорение.
Сравнивая конкретную формулу из условия и общую формулу получаем, что , следовательно, ускорение равно .
Теперь применяем формулу для скорости при равноускоренном движении
Для момента времени имеем:
Он применим для абсолютной любой зависимости координаты тела от времени, даже для случаев, когда тело двигается с переменным ускорением, но для того, чтобы его использовать необходимо: 1) уметь вычислять производные функций; 2) понимать, что скорость тела в некоторый момент времени — это производная координаты по времени в этот момент времени.
Для данной конкретной задачи. Закон изменения координаты имеет вид
Продифференцируем эту функцию по времени и получим функцию, описывающую изменение скорости со временем (штрих обозначает производную по времени)
Поставим в эту формулу момент времени и получим искомую величину.
Пример более сложного случая. Пусть координата изменяется по закону
Тут координата уже кубично зависит от времени, это не равноускоренное движение, ускорение меняется со временем, а значит, первый способ применить нельзя. Воспользуемся вторым
Скорость меняется квадратично со временем. В момент времени она равна
Движение автомобиля описывается уравнением s 6t 5t2 ускорение автомобиля равно м c2
На рисунке приведён график зависимости модуля средней скорости Vр материальной точки от времени t при прямолинейном движении. Из приведённого ниже списка выберите все правильные утверждения и укажите их номера.
3) За первые 3 с движения материальная точка проходит путь 8 м.
4) За первые 2 с движения материальная точка проходит путь 12 м.
5) Модуль начальной скорости материальной точки равен 2 м/с.
При равноускоренном движении средняя скорость равна полусумме начальной и конечной скорости. Найдем, чему равна скорость тела в момент времени t = 1 c:
Таким образом, ускорение тела равно
Путь — это произведение средней скорости на затраченное время
Обратите внимание, что на графике приведена зависимость средней скорости от времени, а не просто скорости. Наклон этого графика не равен ускорению.
Грузик массой m = 100 г неподвижно висит на лёгкой абсолютно упругой гибкой резинке с коэффициентом упругости k = 100 Н/м в поле силы тяжести с ускорением свободного падения g. Грузик поднимают из этого положения вертикально вверх на высоту h = 80 см, меньшую длины резинки, и отпускают без начальной скорости. Найдите время движения грузика вниз до точки его остановки. Начальной деформацией резинки при покоящемся грузике можно пренебречь.
Какие законы Вы используете для описания движения груза на резинке? Обоснуйте их применение к данному случаю.
Обоснование. Грузик движется поступательно, поэтому его можно принять за материальную точку. На первом этапе движения грузика на него действует только сила тяжести, т.к. сопротивлением воздуха мы пренебрегаем. Следовательно, на этом этапе грузик движется с ускорением свободного падения. И для описания движения тела можно применять законы прямолинейного равноускоренного движения.
На втором этапе движения резинка упруго деформируется, в результате чего на грузик начинает действовать изменяющаяся по модулю и направлению сила упругости, для которой справедлив закон Гука. Таким образом, второй этап движения представляет собой механические колебания груза на резинке. Т.к. сила тяжести не меняется по модулю и направлению, то она не влияет на характер колебаний грузика. В инерциальной системе отсчета возможно применение законов колебательного движения.
Перейдем к решению.
1. Введём неподвижную декартову систему координат с вертикальной осью ОХ, направленной вниз, причём начало координат поместим на уровне начального положения грузика.
2. После подъёма и отпускания грузика его движение вниз в поле силы тяжести разбивается на две стадии: вначале он свободно падает с ускорением g с высоты h до точки x = 0 (поскольку начальной деформацией резинки можно пренебречь) за время
что следует из формул кинематики равноускоренного движения.
3. Затем резинка начинает растягиваться, а грузик — тормозиться вплоть до остановки в нижней точке его движения. Поскольку начальное растяжение резинки компенсирует вес грузика, то на второй стадии можно считать, что действует только упругая сила, и уравнение движения (второй закон Ньютона) в проекции на ось ОХ имеет вид:
что является уравнением гармонических колебаний с периодом
4. С учётом начальных условий закон движения грузика на втором этапе представляет собой 1/4 часть периода синусоиды и происходит за время
5. Таким образом, искомое время движения грузика вниз до точки остановки равно
6. Подставляя численные данные из условия, получаем:
Ответ:
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №19. Решение задач с помощью производной.
Перечень вопросов, рассматриваемых в теме
Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S’(t).
Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.
Производная от производной называется второй производной или производной второго порядка и обозначается fили
Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть
Первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Давайте вспомним механический смысл производной:
Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S'(t).
Пример 1. Точка движется прямолинейно по закону (S выражается в метрах, t – в секундах). Найти скорость движения через 3 секунды после начала движения.
скорость прямолинейного движения равна производной пути по времени, то есть .
Подставив в уравнение скорости t=3 с, получим v(3)=32+4∙3-1= 20 (м/с).
Пример 2. Маховик, задерживаемый тормозом, поворачивается за t с на угол
Найдите:
а) угловую скорость вращения маховика в момент t = 6 с;
б) в какой момент времени маховик остановится?
Решение: а) Угловая скорость вращения маховика определяется по формуле ω=φ’. Тогда ω=(4t-0,2t 2 )=4-0,4t.
Подставляя t = 6 с, получим ω=4-0,4∙6=1,6 (рад/с).
Ответ: угловая скорость маховика равна (рад/с); t=10 c.
Пример 3. Тело массой 6 кг движется прямолинейно по закону S=3t 2 +2t-5. Найти кинетическую энергию тела через 3 с после начала движения.
Решение: найдём скорость движения тела в любой момент времени t.
Вычислим скорость тела в момент времени t=3. v(3)=6∙3+2=20 (м/с)..
Определим кинетическую энергию тела в момент времени t=3.
Производная второго порядка. Производная n-го порядка.
Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.
Производная от производной называется второй производной или производной второго порядка и обозначается .
Примеры. Найдем производные четвёртого порядка для заданных функций:
f'(x)=cos 2x∙(2x)’= 2cos 2x
f (x)=-2sin2x∙(2x)’=-4sin 2x
f (4) (x)= 8 sin2x∙(2x)’= 16 sin 2x
f (x)= 9∙ 2 3x ∙ln 2 2
f (4) (x)= 81∙ 2 3x ∙ln 4 2
Механический смысл второй производной.
Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть
Итак, первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)
найдём скорость точки в любой момент времени t.
Вычислим скорость в момент времени t=4 c.
Найдём ускорение точки в любой момент времени t.
Ответ: v=21(м/с); a= v’= 6 (м/с 2 ).
Решение: сила, действующая на тело, находится по формуле F=ma.
Найдём скорость движения точки в любой момент времени t.
Тогда a(4)= 6∙4-6= 18 (м/с 2 ).
Разбор решения заданий тренировочного модуля
№ 1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Напишите производную третьего порядка для функции:
Решим данную задачу:
№ 2. Тип задания: выделение цветом
Точка движется прямолинейно по закону S(t)= 3t 2 +2t-7. Найти скорость и ускорение точки в момент t=6 c.
Решим данную задачу:
Воспользуемся механическим смыслом второй производной:
Вычислим скорость в момент времени t=6 c.
Найдём ускорение точки в любой момент времени t.
Ответ: v=38(м/с); a= v’= 6 (м/с 2 ).
Движение автомобиля описывается уравнением s 6t 5t2 ускорение автомобиля равно м c2
Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени. Чему равен максимальный модуль ускорения? Ответ выразите в метрах на секунду в квадрате.
На всех рассматриваемых интервалах времени скорость автомобиля меняется равномерно, следовательно, ускорение на каждом интервале постоянно. Рассчитаем ускорения:
в интервале от 0 до 10 с:
в интервале от 10 до 20 с:
в интервале от 20 до 30 с:
в интервале от 30 до 40 с:
Первый способ решения(для трудолюбивых)
1. Определяем цену деления по осям.
2. Нахожу ускорения на каждом участке:
III-участок: (10-20)/10 =-1
IV-участок: (15-10)/10 =1,5
Второй способ (для продвинутых)
a=tg(альфа), угол >, то и а>
Здравствуйте! Я не очень понимаю, а как определить величину наклона.
Величиной наклона здесь называется параметр, который показывает, насколько быстро увеличивается (или уменьшается) функция. Его можно измерять, например, тангенсом угла наклона графика, тогда это будет в точности ускорение. Но так как здесь не спрашивается величина ускорения, можно просто посмотреть на график и найти на нем участок, где функция изменяется «круче» всего. Это и даст участок с максимальным по модулю ускорением.
Тело разгоняется на прямолинейном участке пути, при этом зависимость пройденного телом пути S от времени t имеет вид:
Чему равна скорость тела в момент времени t = 2 c при таком движении? (Ответ дайте в метрах в секунду.)
При равноускоренном движении зависимость пройденного телом пути от времени в общем виде имеет вид
Сравнивая с выражением, данным в условии, заключаем, что оно укладывается в это общее правило, а значит тело двигалось равноускоренно. Сопоставляя конкретные члены в выражениях получаем, что начальная скорость равна а ускорение Таким образом, скорость тела в момент времени равна :
vt=t(v0 +(at)/2) делим обе части на t
У Вас ошибка в первой формуле
— это формула для равномерного движения, можно ее с натяжкой использовать и для равноускоренного движения, но тогда под v надо понимать среднее арифметическое начальной и конечной скоростей (или значение скорости в середине исследуемого промежутка времени). В нашем случае, Вы таким образом получаете скорость в момент времени 1 с.
Лучше всего, запомните закон изменения скорости при равноускоренном движении
А правильно ли будет решить математическим способом:найти производную,а потом подставить вместо t=2?
Дифференциальный анализ придумали физики, чтобы решать приблизительно вот такие вот задачи. Так что спокойно можете использовать свои знания и умения, если Вы уверены в них. Главное — это получить правильный результат, способ его получения не столь важен.
Спасибо за формулу!
Не за что, обращайтесь 🙂
в задаче говорится про прямолинейное движение, а вы описываете равноускоренное. это правильно? объясните пж)
Слово «прямолинейное» означает лишь, что траектория — прямая линия. Двигаться вдоль этой прямой тело может абсолютно произвольно. В данном случае движение равноускоренное.
Спасибо,рассматривая следующую задачу поняла методику их решения
Здравствуйте, а можно ли эту задачу решить, применяя производную?
Здравствуйте, скажите, как нашли a=2 м/с^2?
— общий вид,
— по условию,
значит,
При прямолинейном движении зависимость координаты тела x от времени t имеет вид:
Чему равна скорость тела в момент времени t = 2 c при таком движении? (Ответ дайте в метрах в секунду.)
При равноускоренном движении зависимость координаты тела от времени в общем виде следующая:
Сравнивая с выражением, данным в условии, получаем, что проекция начальной скорости равна а ускорение Таким образом, скорость тела в момент времени равна
Скажите пожалуйста, как вы нашли а? (а=v/t)
Самый просто способ нахождения ускорения по известному закону изменения координаты со временем — описан в решении. Нужно сравнить конкретный закон с общей формулой для равноускоренного движения. Коэффициент при — это половина ускорения.
Если Вы хорошо ориентируетесь в дифференциальном исчислении, то можно поступить следующим образом: ускорение — это вторая производная координаты по времени. Имеем
,
что-то не могу понять никак
Давайте еще раз, более подробно.
Внимательно смотрим на данный нам в задаче закон изменения координаты со временем
Замечаем, что координата квадратично зависит от времени, вспоминаем, что это характерно для движения с постоянным ускорением. Выписываем общую формулу для координаты при таком движении.
Здесь — начальное положение тела в момент времени ; — начальная скорость; — ускорение.
Сравнивая конкретную формулу из условия и общую формулу получаем, что , следовательно, ускорение равно .
Теперь применяем формулу для скорости при равноускоренном движении
Для момента времени имеем:
Он применим для абсолютной любой зависимости координаты тела от времени, даже для случаев, когда тело двигается с переменным ускорением, но для того, чтобы его использовать необходимо: 1) уметь вычислять производные функций; 2) понимать, что скорость тела в некоторый момент времени — это производная координаты по времени в этот момент времени.
Для данной конкретной задачи. Закон изменения координаты имеет вид
Продифференцируем эту функцию по времени и получим функцию, описывающую изменение скорости со временем (штрих обозначает производную по времени)
Поставим в эту формулу момент времени и получим искомую величину.
Пример более сложного случая. Пусть координата изменяется по закону
Тут координата уже кубично зависит от времени, это не равноускоренное движение, ускорение меняется со временем, а значит, первый способ применить нельзя. Воспользуемся вторым
Скорость меняется квадратично со временем. В момент времени она равна