Двигатели будущего для автомобилей

Инновационные автомобильные двигатели 2020: ТОП-6

1574081732 smallОписание и обзор наиболее интересных разработок инновационных двигателей: топ-6 моделей, технические подробности. Видео про необычные двигатели. Описание и обзор наиболее интересных разработок инновационных двигателей: топ-6 моделей, технические подробности. Видео про необычные двигатели.

1574081741 1

Современные двигатели из года в год становятся всё более технологичными и в то же время всё более ненадежными. Производители пытаются и сохранить мощность, и снизить «прожорливость», и соответствовать экологическим нормам, что нередко вредит эффективности конструкции.

О самых инновационных разработках в сфере двигателестроения – в нашем обзоре.

Инновационные автомобильные моторы

1. Skyactiv-G

1574081742 2

Новая разработка от Mazda состоит в снижении температуры цикла для увеличения уровня сжатия бензинового мотора. С этой целью инженеры компании изменили выпускную систему, использовав схему 4-2-1, при которой выхлопные газы поочередно направляются в воздух. Таким образом, за счет снижения попадающих в цилиндры газов улучшается их продувка и снижается температура горючей смеси.

Объем отработанных газов снижается ровно вполовину, тем самым повышая степень сжатия на 3 единицы. Одновременно система корректировки фаз на впускном и выпускном распредвалах улучшает газообмен, а цилиндры небольшого диаметра и увеличенный ход поршня способствуют более слабому нагреву камер сгорания.

Вся проделанная работа позволила повысить крутящий момент на низких оборотах, а уменьшение объема вредных выбросов и экономия топлива получена путем того, что модернизированный двигатель имеет сниженные на 15% обороты по сравнению с традиционными моторами.

В результате те водители, которые не готовы отказаться от классических ДВС, получают атмосферный 2-литровый двигатель, превосходящий экономичностью 1,4-литровый турбированный мотор.

2. Skyactiv-D

1574081777 3

Поработали японские специалисты и над дизельным мотором, считая, что турбированные двигатели обладают слишком высоким давлением и температурой, мешающей топливу равномерно перемешаться с воздухом.

Такой механизм дает быстро осуществлять впрыск и воспламенение, повышая КПД двигателя, а заодно расширяет рабочий диапазон до 5200 об/мин.

Двигатель оснастили двумя последовательными турбокомпрессорами, выдающими 1,4 атм, а эффективный запуск даже при низких температурах обеспечивает система изменения фаз газораспределения. В процессе такта впуска выпускные клапаны открываются, направляя часть отработанных газов обратно в цилиндр и нагревая смесь.

Вес нового двигателя снизился на 10%, тогда как крутящий момент и экономичность лишь немного уступают предыдущему «хиту» Mazda MZR-CD 2.2.

3. Формула идеального мотора

Немецкие инженеры изучили такие параметры, как коэффициент полезного действия, тепловой баланс и механические потери, и вывели формулу идеального рабочего объема цилиндра, который равен 0,5 литра. При этом правильная камера сгорания должна иметь в центре форсунку непосредственного впрыска, а также 4 клапана и свечу. Двигатель с таким устройством будет гораздо проще конструировать – словно «из кубиков», по высказыванию специалистов BMW.

В 3-цилиндровом исполнении двигатель будет обладать одной турбиной, в 4-цилиндровом – двухпоточной, а в 6-цилиндровом – битурбированной. Едиными будут цепной привод распредвалов, газораспределительная система и ходы клапанов.

Кроме того, для одинаковых по объему турбированных бензиновых и дизельных двигателей допустимо будет применять одни и те же детали и агрегаты. То есть, автопроизводителю будет проще контролировать объемы производства в зависимости от потребительского спроса и изготавливать на единой производственной линии порядка четырех моделей одновременно.

4. Сколковские инновации

1574081813 5

Не отстают от немецких коллег и ученые отечественного центра «Сколково», которые также сумели существенно повысить КПД двигателей внутреннего сгорания.

Все автопроизводители годами работают над тем, чтобы улучшить достаточно невысокий КПД классических двигателей. Они изменяют тягу, оснащают современными технологиями, становятся экономичными и экологичными. Теперь и российские инженеры разработали революционную технологию, достойную внедрения во всем мире.

Проект «Мотор» в данный момент не имеет мировых аналогов и позволяет более чем на 30% снизить потребление даже у наиболее экономичных двигателей.

Инженеры заменили кривошипно-шатунный механизм на уникальную запатентованную кинематическую схему по отбору мощности. Специальное устройство будет «гасить» инерционные силы, совершенствуя показатели любого ДВС, в том числе улучшает крутящий момент, вдвойне снижает частоту вращения, упрощает трансмиссионный узел.

Подобная тестовая схема показала отличные результаты и функциональность, поэтому не за горами новые, высокопроизводительные двигатели российского производства.

5. Скандинавские свободные клапаны

1574081836 6

Дочерняя фирма шведского производителя Koenigseggпод названием FreeValve проводит интересные изыскания в области усовершенствования распредвала двигателя. Подход специалистов компании состоит в том, чтобы заменить привязку к конкретной, статической формуле гибкостью в ходе работы двигателя.

Специалисты отметили, что двигателю не нужны распределительные валы, так как новые клапаны будут способны функционировать каждый по отдельности, не соединенные жестко с «соседями». Так и родилось название новой разработки — «свободные клапаны» или FreeValve.

Классический распредвал в силу конструктивных особенностей далеко не идеален, вызывая определенные проблемы: повышенный расход топлива от увеличения мощности или сниженный крутящий момент на высоких оборотах для улучшения пиковой мощности. Тогда как FreeValve заменил его клапанами, приводимыми в действие отдельным приводом, контролируемым электроникой.

Шведская технология делает двигатель максимально эффективным при разных режимах работы и на разных оборотах без риска провалов в процессе холостого хода, слабой динамики или усиленного расхода топлива.

Лишенная распредвала система затрачивает на 10% меньше энергии, которая обычно тратится на работу привода «головных» систем, преодоления трения. На выходе такой двигатель получается дешевле аналогичного дизельного агрегата, имея более высокую эффективность, меньший расход топлива и улучшенные показатели крутящего момента.

Наконец, специалисты шведской компании предусмотрели вариант аварийной работы силового агрегата, во время которого даже при работе лишь четверти приводов клапанов водитель сможет продолжить движение и добраться до техцентра.

6. На благо экологии

1574081812 7

В силу экологических требований Евро-7 все автопроизводители бьются над задачей разработки двигателей одновременно мощных и имеющих соответствующий уровень выбросов. Не избежала этой участи и легендарная компания Ferrari, исследователи которой уже направили в Американское Бюро по патентам и товарным знакам сразу два эскиза новой технологии впрыска топливо-воздушной смеси.

Одна из них предполагает впрыск малой доли топлива перед свечой зажигания сразу перед ее включением, чтобы таким путем улучшить продувку камеры сгорания и повысить температуру топливо-воздушной смеси. В таком случае двигатель прогреется в разы быстрее и станет менее токсичен для окружающей среды.

Другой разработкой является дополнительная компактная камера сгорания, помещенная над центром основной камеры сгорания, отделенная от нее перегородкой и имеющая собственную свечу зажигания. Задача подобной конструкции аналогичная – снизить уровень выброса токсичных веществ и повысить топливную эффективность.

Конструкция современных двигателей мало отличается от «отцов-основателей», имея те же коленвалы, поршни, цилиндры и прочие элементы. Поэтому основные новшества касаются модернизации этих узлов, оснащении их электронным управлением, замены материалов изготовления на более лучшие и надежные.

Создание же по-настоящему нового силового агрегата – процесс длительный. Поэтому при частой смене модельных рядов новые двигатели они преимущественно получают от предыдущих «собратьев».

Видео про необычные двигатели:

Источник

Обзор 10 новых двигателей внутреннего сгорания

Подписывайтесь на каналы:
@AutomotiveRu — новости автоиндустрии, железо и психология вождения
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla

Шествие двигателей внутреннего сгорания продолжается, при этом в них появляются инновации – от изменяемой степени сжатия до клапанов без кулачков.

Электрические силовые агрегаты в наши дни на пике моды, но эволюция двигателя внутреннего сгорания не замедлилась. На самом деле, новые изменения происходят быстрее, чем когда-либо.

Рассмотрим, например, этот краткий список последних инноваций двигателя: двигатель с турбонаддувом без кулачков; новый дизель с самым низким в мире коэффициентом сжатия; четырехцилиндровый двигатель с переменным коэффициентом сжатия; первый в мире бензиновый двигатель, использующий зажигание при сжатии.

Здесь мы собрали фотографии двигателей, предлагающих некоторые из последних инноваций в области силовых агрегатов. От интеллектуальных двигателей грузовиков до крошечных моделей с турбонаддувом, мы предлагаем вам подборку основных достижений последних лет. Пролистайте следующие слайды, чтобы увидеть лучшие из них.

01 SkyActiv MAZDA

2,2-литровый двигатель Mazda SkyActiv-D имеет самый низкий в мире коэффициент сжатия (14,1:1) среди всех дизельных двигателей, что, как сообщается, дает потребителям множество преимуществ. Более низкие показатели сжатия идут рука об руку с более низким давлением и пониженной температурой в верхней части поршня, что способствует лучшему смешению воздуха и топлива, а также уменьшает проблемы с оксидами азота и сажей, давно ассоциирующиеся с дизельным двигателем, говорит Mazda. Более того, более низкий коэффициент сжатия SkyActiv-D обеспечивает меньшее трение и меньший вес конструкции. На нью-йоркском автосалоне на прошлой неделе японский автопроизводитель объявил, что собирается изменить антидизельные настроения последнего времени, установив новый 2,2-литровый дизельный двигатель на компактный кроссовер CX-5 2019 года.

02 deactivation CHEVROLET 0

Представьте себе полноразмерный пикап, работающий всего на двух цилиндрах. Это то, на что способен Chevrolet Silverado, благодаря добавлению в новый 2,7-литровый турбодвигатель электромеханического регулируемого распределительного вала и функции активного управления подачей топлива (Active Fuel Management). В целом, двигатель предлагает 17 различных схем отключения цилиндров, что позволяет ему справиться практически с любой ситуацией при движении. «Это все равно, что иметь разные двигатели для работы на низких и высоких оборотах», — отметил главный инженер двигателя Том Саттер в пресс-релизе. «Профиль распределительного вала и синхронизация клапанов полностью отличаются на низких и высоких скоростях». Двигатель мощностью 310 л.с. и крутящим моментом 471.8 Нм заменяет 4,3-литровый V-6 на Silverado.

03 camless KOENIGSEGG

Производитель суперкаров Koenigsegg Automotive AB возлагает большие надежды на технологию бескулачкового двигателя, которую он представил на концептуальном автомобиле в 2016 году. Известная как FreeValve, эта технология использует «пневмо-гидравлические-электронные» приводы для управления процессом сгорания в каждом цилиндре. Koenigsegg говорит, что с помощью этих приводов, вместо кулачковых валов, можно более точно управлять процессом сгорания в каждом цилиндре. FreeValve также позволяет люксовому автопроизводителю отказаться от других дорогостоящих автозапчастей, включая корпус дроссельной заслонки, кулачковый привод, ГРМ, выпускной клапан, предкаталитический преобразователь и систему непосредственного впрыска. По слухам, компания готовит технологию для установки на суперкар стоимостью 1,1 миллиона долларов, который будет выпущен в 2020 году. В интервью Top Gear основатель компании Кристиан фон Кёнигсегг (Christian von Koenigsegg) заявил, что FreeValve позволит ему построить автомобиль с нулевым уровнем выбросов и двигателем внутреннего сгорания. «Идея заключается в том, чтобы доказать миру, что даже двигатель внутреннего сгорания может быть полностью СО2-нейтральным», — сказал он.

04 VC Turbo NISSAN

Говорят, что двигатель Nissan VC-Turbo является первым в мире готовым к производству двигателем с переменным коэффициентом сжатия. VC-Turbo разрабатывался более 20 лет, и он использует усовершенствованную многозвеньевую систему для изменения коэффициента сжатия. Во время работы угол наклона многозвеньевых рычагов варьируется, что приводит к регулировке верхней мертвой точки поршней. С изменением положения поршня меняется и степень сжатия. Результат — производительность по требованию. Высокий коэффициент сжатия обеспечивает большую эффективность, в то время как низкий коэффициент сжатия увеличивает мощность и крутящий момент. VC-Turbo доступен в Nissan Altima 2019.

05 Pentastar FCA 0

3,6-литровый двигатель Pentastar от Fiat Chrysler Automobiles является примером внимательного отношения к деталям и политики постоянного совершенствования. Двигатель использует две ключевые особенности для повышения топливной экономичности и крутящего момента. Первая из них — это регулируемый подъем клапана (VVL). VVL позволяет двигателю оставаться в режиме пониженного подъема до тех пор, пока водитель не потребует больше мощности. Затем он реагирует переключением в режим повышенного подъема для улучшения сгорания топлива. Вторая инновация — это рециркуляция отработавших газов с охлаждением, которая, как говорят, сокращает выбросы вредных веществ, снижает потери при прокачке и позволяет работать без стука при высоких нагрузках двигателя. Эти особенности обеспечивают Pentastar увеличение экономии топлива на 6%, при этом крутящий момент увеличивается на 14,9%. Fiat Chrysler также отмечает, что эти улучшения наблюдаются при оборотах двигателя ниже 3000 об/мин, когда повышенный крутящий момент необходим больше всего.

06 Dynamic Force TOYOTA

В наши дни производительность двигателя — это не только крутящий момент и лошадиные силы. Речь идет и об эффективности. Toyota доказала это в 2018 году, представив 2,5-литровый четырехцилиндровый двигатель Dynamic Force, который, по имеющимся данным, обладает тепловым КПД около 40%. Это большой шаг вперед, учитывая, что большинство современных двигателей приближаются к 30%, что, в свою очередь, означает, что 70% энергии сгорания топлива теряется в виде тепла. Toyota добилась этого с помощью ряда современных усовершенствований, включая длинный ход, высокий коэффициент сжатия, форсунки с двойными распылителями, интеллектуальную регулировку синхронизации клапанов и непосредственный впрыск топлива. Результат: Экономия топлива на трассе 2018 Camry составляет 29 и 41 мг, что на 26% выше по сравнению с предыдущей моделью.

07 EcoBoost FORD

1,5-литровый двигатель EcoBoost от Ford заслуживает внимания, потому что это еще один пример «умного» маленького двигателя, способного управлять относительно большим автомобилем с помощью двух цилиндров. Рядный трехцилиндровый EcoBoost выполняет эту задачу при отключении цилиндра, который определяет ситуацию, когда один цилиндр не нужен, и поэтому автоматически отключает его. Система может отключить или активировать цилиндр всего за 14 миллисекунд для поддержания плавного хода. Однако даже на трех цилиндрах она способна выдать 180 л.с. и 240 Нм крутящего момента (при сгорании 93-октанового топлива). Этот двигатель установлен в европейском Ford Fusion и американском внедорожнике Ford Escape, способном буксировать до 900 кг.

08 Twin Turbo CADILLAC

В 2018 году компания Cadillac еще больше увлеклась турбокомпрессорами, представив двигатель Twin Turbo V-8. Twin Turbo использует «горячую V-образную конфигурацию» — то есть устанавливает турбокомпрессоры в верхней части двигателя, в ложбине между головками. Таким образом, инженеры Cadillac утверждают, что они уменьшили общий размер конструкции двигателя и практически ликвидировали отставание турбокомпрессоров. Использованный на Cadillac CT6 V-Sport, новый двигатель выдает примерно 550 л.с. и обеспечивает потрясающий крутящий момент в 850.1 Нм.

09 Hellcat FCA

Для тех, у кого есть страсть к старомодным лошадиным силам и крутящему моменту, у Dodge есть ответ в виде 6,2-литрового высокомощного двигателя HEMI V-8. Двигатель, выдающий 797 л.с. и 958.6 Нм крутящего момента, большую часть своей мощности черпает из 2,7-литрового нагнетателя — самого большого заводского нагнетателя среди всех серийных автомобилей. Наряду с нагнетателем в двигателе используются высокопрочные шатуны и поршни, высокоскоростной клапанный механизм и два двухступенчатых топливных насоса. 6,2-литровый двигатель, используемый в Dodge Challenger Hellcat Redeye, способен принимать огромное количество бензина в высокопроизводительном режиме, опорожняя бак чуть менее чем за 11 минут. Хорошая новость, однако, в том, что при нормальных дорожных условиях Hellcat все еще находится на отметке 10.69 л/100 км. Dodge хвастается тем, что Hellcat является самым быстрым в отрасли маслкаром с разгоном 0-100 км/ч в 3,4 секунды.

10 SkyActiv X MAZDA

Поговорим о другой крупной инновации в двигателе 2018 года: Mazda выпустила двигатель SkyActiv-X, который, как говорят, является первым в мире бензиновым двигателем, использующим воспламенение при сжатии. Соединив две классические технологии, инженеры Mazda утверждают, что они объединили высокую тягу бензинового двигателя с эффективностью, крутящим моментом и реакцией дизеля. Ключом к их реализации является технология, известная под названием Spark Controlled Compression Ignition, которая максимально увеличивает зону, в которой возможно воспламенение от сжатия, и обеспечивает плавный переход между воспламенением от сжатия и воспламенением от искры. При внедрении двигателя прошлой осенью Mazda сообщила удивительные цифры: крутящий момент повысился на 10-30%, а КПД — на 20-30% по сравнению с предшественником. Mazda говорит, что двигатель также предлагает большую свободу в выборе передаточных чисел, что еще больше увеличивает экономию топлива и ходовые качества двигателя.

Подписывайтесь на каналы:
@AutomotiveRu — новости автоиндустрии, железо и психология вождения
@TeslaHackers — сообщество российских Tesla-хакеров, прокат и обучение дрифту на Tesla

image loader

Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.

Источник

Как совершенствовались автомобильные двигатели и что их ждет в будущем

В рамках спецпроекта с брендом моторных масел G-Energy рассказываем об истории автомобильных двигателей. Первая часть — экскурс в историю двигателестроения, вторая и третья — история автомобилей ХХ века, четвертая — спортивная история. Сегодня говорим о будущем автомобильных двигателей.

«Пятилетку – в четыре года!»

Третье десятилетие XXI века должно стать решающим в истории мирового автомобилизма, в истории развития двигателей. И это не пафосное заявление: складывается слишком много факторов. Инженеры довели двигатель внутреннего сгорания практически до совершенства, но этого оказалось мало. Экологи и политики оказывают на автоиндустрию серьезнейшее давление, буквально вынуждающее к переходу на использование электроэнергии. Развернулось едва ли не соревнование – у кого процесс будет идти быстрее. В изначальных планах формулировался глобальный переход «на электротягу» к середине века, но сейчас все больше стран строят «встречные планы». Буквально на днях объявила о смещении даты «бана» традиционных двигателей одна из цитаделей мирового автомобилизма – Великобритания: здесь переход к электромобилям планируется уже в 2030 году. Новость о том, что в 2024-м BMW прекратит производство бензиновых и дизельных двигателей на заводе в Мюнхене – том самом, с которого все начиналось, пришла уже тогда, когда эта статья редактировалась. И подобные новости поступают едва ли не каждую неделю.

Инициативу берут на себя и местные власти, заявляя о планах запретить въезд в центры городов, а то и в принципе на их территорию автомобилям с традиционными – в первую очередь дизельными – двигателями.

Как ни удивительно, переход на электрическую энергию вовсе не выглядит концом света для тех, кто трудится сейчас в автомобильной отрасли. Помимо экологической чистоты, он несет в себе и новые возможности для конструкторов, инженеров и дизайнеров. Занятые сейчас созданием традиционных автомобилей специалисты ждут перемен с энтузиазмом. Ведь даже сама компоновка автомобиля может радикально поменяться, допустим, при использовании «мотор-колес». Все больше и больше компаний разрабатывают и показывают специализированные платформы – основу для будущих электромобилей. И демонстрируют на их примере такие компоновочные возможности, которые в традиционных двигателях и трансмиссиях нельзя реализовать просто технически. Многие производители стараются объяснить потенциальным покупателям, что управление электромобилем может быть ничуть не менее увлекательно, интересно и приятно, чем обычным автомобилем. Спортивные соревнования на электромобилях тоже набирают обороты (и это далеко не только Formula E), и на таких состязаниях ставят рекорды скорости.

Аккумулятор, домашняя проводка и. образ жизни

Но не стоит думать, что переход на использование электрической энергии – вещь простая и может свершиться сразу после издания закона. Объективные сложности здесь имеются – и именно над их решением сейчас трудится немало специалистов.

Например, важным аспектом является экологическая чистота производства аккумуляторных батарей, а также их безопасная и безвредная утилизация по завершению срока службы. Производство тяговых автомобильных аккумуляторов требует дорогих цветных и редкоземельных металлов – потому они и остаются достаточно дорогостоящими, да и экологичность такой добычи относительна. Прогресс на этом поле ощутим: литий-ионные полимерные аккумуляторы, безусловно, намного эффективнее и чище своих предшественников пятнадцатилетней давности, не говоря уже о классических свинцовых. Есть и более современные технологии создания аккумуляторов, и сейчас необходимо довести их до готовности использования в массовых объемах. Запас автономного хода, который сейчас подразумевается даже для относительно массовых моделей электромобилей, еще 7–8 лет назад не был доступен и за самые большие деньги. Так что производство аккумуляторов – это все-таки едва ли не наименьшая из проблем, развитие технологий здесь действительно внушает оптимизм. Чем выше будет спрос – тем скорее появятся и новые разработки, и они станут доступнее. Взоры мирового автомобильного рынка здесь во многом обращены на Китай. И не потому, что китайцы достигли каких-то невероятных прорывов в технологиях (хотя, активно привлекая западных специалистов, они делают семимильные шаги). К тому же невероятный по своей емкости рынок подразумевает большие тиражи, а значит, неизбежно удешевление – и новые разработки станут доступными в других регионах. То есть надежда, что аккумуляторы подешевеют, вполне обоснованна.

А вот с утилизацией пока сложнее. Различные производители оговаривают разные сроки службы аккумуляторных батарей: кто семь лет, кто десять, то есть достаточно длительные периоды. Но и они конечны (впрочем, «конечными» стремятся нынче делать и сами автомобили – об этом мы уже говорили). Возможно, компромисс будет найден на уровне «срок службы батареи равен сроку службы автомобиля», что снимет с пользователя множество проблем. Вовсю идут исследования – как можно использовать отработавшие свое «на борту» батареи в их «послеавтомобильной» жизни. Предложений уже немало, но единых решений, позволяющих справиться с проблемой системно, в массовых объемах, пока нет.

Еще одна задача – развитие зарядной инфраструктуры. Причем решать ее надо не только в плане доступности зарядных станций (что как раз более-менее решаемо за счет дооборудования существующих традиционных заправок), но и в плане длительности пребывания электромобиля «на кабеле». Да, сделан огромный шаг в плане скорости зарядки аккумуляторов. Многие производители заявляют: их электромобили можно зарядить буквально за пару часов, а до достаточного для среднесуточного пробега уровня – буквально за полчаса. Ну, то есть «остановился, попил кофе. готово!». Но здесь имеется пометка мелким шрифтом – при использовании быстрых зарядных станций. Вот только рабочая мощность всех этих быстрых станций – 50, 70, а то и 100 кВт при напряжении 400 В. Новейшее поколение «ультрабыстрых» зарядок – это вообще напряжение 800 В и мощность до 300 кВт. Для справки: в России нормативно выделенная мощность сети на квартиру или индивидуальный дом – 15 кВт. Увеличить ее можно, однако это требует специальной процедуры, проверки «наличия технической возможности», да и оплачивается такая энергия по более высоким тарифам. Возможно, Россия не пример, но законы физики одинаковы в любой стране мира: рассчитанная на определенную мощность сеть населенного пункта не позволит «просто взять и понавешать» 100-киловаттных станций в каждом частном доме. Долгая зарядка от обычной сети пока что в быту остается неизбежной, а это все те же 6, 8, а то и 10 часов. В зонах индивидуальной застройки эту проблему решить проще (к тому же разработаны, например, бесконтактные индукционные станции, монтируемые в пол гаража и имеющие такой же принцип действия, как и беспроводная зарядка смартфона). А вот в случае больших многоквартирных домов адекватное решение, рассчитанное не на единицы электромобилей около дома, а именно на массовую их эксплуатацию, еще предстоит выработать.

Решаема ли эта проблема в принципе? Решаема! Уже в начале «десятых» годов автор этих строк знакомился в Японии с интересным и реально воплощенным решением, в рамках которого электромобили приехавших на работу в бизнес-центр сотрудников, становились частью энергосистемы. Зарядившись, они «оставались на связи» и обменивались с ней энергией, сглаживая пики потребления, то есть аккумуляторы работали не только «для себя», но и «для всех». И это лишь один из вариантов. Ряд автопроизводителей предлагали организовать сеть пунктов быстрой замены аккумуляторов на заряженные, но эта идея не прижилась. Во-первых, она опять же требует создания целой структуры, во-вторых – слишком высокой степени унификации.

Индукционный (беспроводной) способ зарядки открывает множество возможностей. Если зарядную «плиту» можно установить в собственном гараже, то почему этого нельзя сделать на общественной парковке? Можно! И такие прецеденты уже есть. Более того, рассматривается даже возможность укладки зарядных модулей в покрытие улиц – то есть электромобиль сможет подзаряжаться даже на ходу. Конечно, это требует создания специальной дорожной инфраструктуры, но ее рано или поздно все равно придется предусматривать – как для нужд электрификации, так и для работы беспилотных систем.

Сейчас производители стали предлагать и «двунаправленные» зарядные порты: электромобиль может использовать энергию не только на собственные нужды (передвижение, отопление, работа бортовых систем), но и, к примеру, для подпитки освещения в кемпинге, работы простейшей бытовой техники. То есть электромобиль рассматривается и как составляющая некой энергетической инфраструктуры, и как часть образа жизни – все актуальнее аспекты именно удобства его использования.

В ряде стран открыто говорят, что электрификация потребует реорганизации самой жизни автомобилиста. Грубо говоря, если прежде ты просто заезжал на заправку, заправлял автомобиль бензином или дизелем и уезжал, то теперь «чашку кофе» (пока электромобиль заряжается даже самой мощной специальной зарядкой) и перерыв на полчаса минимум придется принять как должное. Ну, значит, приспосабливайтесь, берите с собой ноутбуки и т.п. В общем, это уже имеет весьма опосредованное отношение собственно к технике и двигателям.

Есть еще немало нюансов. Например, об одном вспоминают вообще редко. В личных беседах специалисты одной из наиболее активных в плане электрификации марок рассказали автору, что эффективность и экономическая обоснованность процесса во многом зависит от себестоимости собственно электроэнергии. Одно дело, когда поблизости находится мощная ГЭС, другое – когда речь идет о дорогостоящих способах генерации. Необходимо учитывать и экологичность самой генерации энергии, и потери при передаче ее «до розетки».

Рано или поздно решения найдутся для всех проблем. Вопрос – за какое время.

Не спеши ты их хоронить

Великобритания, Германия, Скандинавия, США. Все, о чем мы так долго говорим, относится к развитым странам. Даже здесь решение поднятых проблем в продуманном режиме, а не аврально, выглядит задачей отнюдь не на одно десятилетие. Интересная альтернатива аккумуляторным электромобилям – электромобили на водородных топливных элементах. Химическая реакция между водородом и кислородом сопровождается мощным выделением энергии (причем без горения), а в качестве выхлопа образуется лишь немного водяного пара. То есть непосредственно на борту автомобиля существует как бы небольшая электростанция. Заправка водородом происходит очень быстро – сопоставимо с традиционным топливом, если даже не быстрее. Да и сами заправочные станции принципиально не отличаются от обычных (никого же не смущает возможность заправки автомобилей с газобалонным оборудованием рядом с обычными бензиновыми). Такие электромобили уже давно не теория, их созданием занимаются Toyota, Hyundai, Honda, General Motors, Volkswagen и другие. Считается, что водородные смогут занять не меньше трети рынка электромобилей. Панацея? Увы, нет.

Во-первых, стоит напомнить, что смесь кислорода и водорода в просторечье называется гремучим газом. И пометка «без горения» выше была сделана не просто так. С горением все обстоит несколько хуже. Соответственно, требуется особая осторожность и внимание при транспортировке, заправках, хранении.

Во-вторых, водород для топливных элементов хранится под очень высоким давлением – порой до 700 атмосфер, а то и выше. Да, созданы сверхпрочные баки из композитных материалов, не боящиеся самых серьезных ДТП: автомобиль будет полностью уничтожен, но бак «выживет». Но как быть даже не с созданием соответствующих уплотнений и соединений, а с контролем их состояния, банальной культурой эксплуатации? Далее см. пункт «во-первых».

В-третьих и в-четвертых. Крайне дорогое оборудование: в топливных элементах не обойтись без цветных и редких металлов. Крайне дорог и сам водород – его производят либо из природного газа (то есть от углеводородов тут тоже далеко уйти не получается), либо методом электролиза – со значительными затратами электроэнергии. Про производство электроэнергии и соответствующие затраты и чистоту смотрим еще раз выше в этом тексте. Вечный двигатель изобретаться не хочет никак.

Традиционным двигателям внутреннего сгорания еще долгие годы будет находиться применение. И достаточно простым, разработанным еще во времена «до даунсайзинга» (помните соответствующую часть нашего рассказа?). Не зря же многие производители сохраняют в своих линейках старые добрые атмосферники с рабочим объемом 2–3 л. Запретят в Европе «дизеля», так проверенные годами и славящиеся надежностью дизельные двигатели Peugeot Citroen, Volvo, Volkswagen и другие еще долгие годы будут верой и правдой служить в других регионах мира.

И даже доведенным до технических пределов «даунсайзинговым» моторам уже сейчас находится интересное применение в «электрифицированном» будущем – в составе гибридных силовых установок.

HEV, PHEV, MHEV и другие

Гибридными называются автомобили, силовые установки которых используют несколько источников энергии. Казалось бы, все просто – это энергия, поставляемая ДВС, и энергия, запасенная в аккумуляторных батареях? И да и нет. Гибридные (да и «чисто» электрические) силовые установки сделали качественный шаг вперед в развитии, когда была в достаточной мере освоена еще и рекуперация, то есть возвращение аккумулятору затраченной электрической энергии путем преобразования из кинетической – при замедлении или торможении автомобиля.

Гибридные системы (HEV – Hybrid Electric Vehicle) – это целое семейство разных вариантов. Во-первых, они различаются по схеме. Самая простая – последовательная. В этом случае двигатель внутреннего сгорания используется фактически как автономная электростанция. Работает он в наиболее благоприятном режиме, крутит генератор, подзаряжает тяговую батарею. А от этой батареи питается электромотор, приводящий в движение собственно колеса. Все бы ничего, но из всех гибридных систем КПД у последовательной наименьший. На практике такими системами оснащались гибриды General Motors – например, неизвестный в России Chevrolet Volt.

При параллельной схеме доступ к ведущим колесам имеют и ДВС, и электромотор, питающийся от отдельной батареи. Они могут действовать как по отдельности, так и совместно. Электромотор может помогать традиционному двигателю в наиболее нагруженных режимах, а на какое-то время и полностью брать на себя движение. Разрядился аккумулятор – нагрузка ложится только на ДВС. КПД такой системы ощутимо выше, но тут уже и конструкция посложнее, и ДВС приходится работать не только в комфортном для него режиме. Из ведущих мировых производителей подобную схему достаточно активно использовала Honda.

Едва ли не наиболее популярными в мире стали гибридные модели Toyota (и, соответственно, Lexus), в которых использована последовательно-параллельная схема. Наличие планетарного редуктора – именно через него осуществляется связь между ДВС, электромотором и трансмиссией – позволяет перераспределять потоки энергии в произвольных пропорциях и направлениях. Традиционный двигатель может и колеса крутить, и аккумулятор подзаряжать, а электрический – либо помогать ДВС, либо полностью брать движение на себя, либо подзаряжать аккумулятор при рекуперации кинетической энергии. Преимущества первых двух схем тут объединены. Потому-то Toyota теперь далеко не одинока в использовании такой схемы.

По интересной схеме TTR (Through-the-Road, «через полотно дороги») может быть реализован полный привод гибридного автомобиля. В этом случае бензиновый двигатель отвечает, допустим, за передние колеса, электрический – за задние, а их взаимодействие и согласование обеспечивает единый управляющий модуль. Плюс такой компоновки – отсутствие сложных элементов трансмиссии, минус – не такая гибкость функционирования, как у последовательно-параллельной. Кстати, Toyota также предлагала эту схему на практике, представляла концептуальный автомобиль с такой компоновкой и Kia.

Интересное и едва ли не наиболее доступное решение – так называемый мягкий гибрид (Mild Hybrid), которое используется, например, на современных компактных моделях Hyundai и Kia. Специальный узел, название которого – стартер-генератор – говорит само за себя, имеет мягкую (при помощи приводного ремня) связь с коленчатым валом двигателя. При необходимости он может помогать ДВС, используя энергию тягового аккумулятора, – например, в «нижнем» диапазоне оборотов, где традиционный двигатель выдает маловато нужного при разгоне крутящего момента. А без такой необходимости – выступать в качестве генератора, подзаряжая тот же аккумулятор за счет вырабатываемой ДВС энергии. Интересная фишка такой схемы в том, что на ее базе удобно реализовывать ставшие ныне популярными системы «старт-стоп», когда двигатель внутреннего сгорания временно выключается при кратковременных остановках – допустим, на светофоре. Собственно, именно поэтому специальный узел так и назван – стартер-генератор, а не просто мотор-генератор.

Все большую популярность набирают и гибриды с возможностью подзарядки от внешнего источника – Plug-in Hybrid, или PHEV. Это, по сути, дважды гибрид – автомобиль, сочетающий качества обычной гибридной системы (этакой вещи в себе) и обычного электромобиля на аккумуляторной батарее. Батареи, кстати, в этом случае делают более высокой емкости, и многие современные PHEV вполне способны обеспечить среднестатистический дневной запас хода (50–70 км), вообще не беспокоя ДВС. А вечером – пристроиться заряжаться у обычной розетки, ведь и пополнять запас электроэнергии не так долго, как полноценному электромобилю. Но при желании на PHEV можно передвигаться и с максимальным использованием ДВС.

Именно гибридные модели в ближайшем будущем, скорее всего, и продолжат играть роль локомотивов электрификации. Пока там совершенствуются аккумуляторы, решаются инфраструктурные вопросы и вопросы социальные. Тут же технология уже освоена: гибриды выпускаются и продаются миллионами. В том числе и в тех странах, где полностью электрическую инфраструктуру еще развивать и развивать долгие годы. Имеющие высочайший КПД и готовые отдавать максимальный крутящий момент во всех диапазонах работы электродвигатели существенно облегчают жизнь ДВС, своим «напарникам» по гибридным системам. Соответственно, от тех и не требуются какие-либо суперпоказатели. В гибридных системах используются относительно малолитражные двигатели (с рабочим объемом в основном от 1 до 3 л) достаточно простых конструкций – рядные тройки или четверки, ну или V6 максимум.

Ванкель strikes back!

Что удивительно, в составе гибридных систем возможно даже возрождение двигателя, на котором история (а точнее, все те же возросшие экологические требования), казалось, поставила крест. Мы об этом типе двигателя внутреннего сгорания даже не рассказали ранее: уж больно узкой у него была ниша, работали с такой конструкцией буквально три-четыре марки. Кстати, в том числе и российская Lada. Речь – о двигателе Ванкеля, роторном. Наиболее известны роторные автомобили Mazda, хотя первой моделью с таким двигателем на рынке был немецкий спортивный NSU Spider.

По сути, двигатель Ванкеля – это один цилиндр сложной формы («камера объемного вытеснения»), внутреннюю поверхность которого обегает трехгранный ротор, вращающийся относительно расположенного внутри него статора-шестерни. Траектория, которую проходят в движении вершины трехгранного ротора, называется эпитрохоидой, а внутренняя поверхность цилиндра, соответственно, эпитрохоидальной. Грани ротора «отсекают» в цилиндре камеры переменного объема, в которых и реализуются рабочие такты. Может быть реализован цикл Отто, при этом образование рабочей смеси, смазка и охлаждение, зажигание принципиально не отличаются от обычного поршневого ДВС. Только классический механизм газораспределения при этом не нужен, не нужны отдельные шатуны, не нужен коленчатый вал и картерное пространство. Конструктивная простота и есть главное и принципиальное преимущество роторного двигателя перед поршневым (число деталей в конструкции Ванкеля меньше даже не в разы, а на порядок). Но это не единственное преимущество. Он практически идеально сбалансирован, компактен, обеспечивает великолепные динамические характеристики (недаром же российские роторные Lada выпускались очень малыми сериями и преимущественно для спецслужб).

В чем же тогда дело? Крест на практическом применении такого двигателя чуть было не поставили его недостатки: сложность в изготовлении, очень жесткие требования к периодичности замены масла (поскольку очень высоко давление и нагрев, способный легко перейти в перегрев), повышенная частота ремонтов (замены уплотнителей), меньшая экономичность и высокая токсичность выхлопа. В принципе, последних двух факторов было достаточно в условиях борьбы за экологию.

Но в конце 2018 года Mazda объявила о возрождении ротора. Им удалось добиться 40-процентной (!) экономии топлива по сравнению с тем, что было раньше, а расход масла снизить и вовсе наполовину. Двухкамерный двигатель Renesis (Rotary Genesis) соответствовал требованиям Euro IV и был компактным и мощным: при рабочем объеме 1,3 л его мощность составила 250 л. с.! Была представлена и «старшая» 1,6-литровая модель, обладающая даже лучшими температурными характеристиками. К тому же новый двигатель мог использовать в качестве топлива водород, не требуя особых мер по борьбе с детонацией. Только не путайте это ни с какими «водородными ячейками»: здесь водород применяется абсолютно традиционно – как сжиженный газ в автомобилях с газобаллонным оборудованием.

Вскоре стало известно, что новый двигатель будет использоваться для гибридных силовых установок, благо компактность позволяет легко объединять его в блок и с генератором, и с электромотором.

В общем, делать большие и мощные традиционные двигатели (и обычные, и роторные) в гибридах практически нет смысла – поможет электромотор. Зато к экологическим показателям, к энергоэффективности и даже энергосбережению требования остаются высочайшими.

В борьбе за каждый процент экономии

Дальнейшие улучшения в сторону выполнения этих требований даются буквально крошечными шагами, за которыми тем не менее стоит огромный труд. Занимавшиеся спортом знакомы с подобным: улучшить результат на 10 секунд сразу проще, чем потом улучшать его на одну секунду, а потом – на десятую долю секунды. Вот и повышение энергоэффективности требует столь же серьезных усилий. Каждый новый процент улучшений дается нелегко. Поэтому появление энергосберегающих масел стало важным шагом, хотя и не позволило заявить, что автомобиль стал в разы или хотя бы на десятки процентов экономичнее.

Энергосберегающие масла – это не «лирическое» определение. Их качества вполне четко описаны, а система оценки регламентирована. Сертификационная проверка осуществляется по вполне стандартным методикам, используются сравнения с эталонными маслами. Стоит напомнить и о той части нашего рассказа, где мы говорили о различных стандартах – API, ACEA, ILSAC. В каждой из этих систем для энергосберегающих масел выделены вполне конкретные классификации и обозначения.

Но для начала предупредим, что речь пойдет только о современных двигателях: энергосберегающие масла ориентированы именно и только на них. Будучи примененными по назначению, они действительно способствуют повышению топливной эффективности и снижению содержания вредных веществ в выхлопе, облегчению запуска. Наиболее заметен эффект в условиях высокого расхода топлива – например, в городе. В этом случае энергосберегающее масло поможет сберечь до 5% топлива. Но в среднем принято говорить о более скромных значениях – примерно 3%. Немного? Да, сейчас борьба идет именно за такие проценты – время улучшать результаты на 10 секунд давно в прошлом.

Благодаря специально подобранным современным пакетам присадок энергосберегающие масла способны эффективно работать во всех режимах. Загущающие присадки позволяют вязкости буквально «саморегулироваться» в зависимости от оборотов двигателя, температуры, давления в конкретной точке, от скорости смещения слоев в масляной пленке относительно друг друга. Они способны обеспечить соответствие вязкости нужному уровню и при отрицательных температурах, и при 100 градусах и при 150. Присадки-модификаторы трения вступают в дело при граничном режиме смазки. Благодаря им на поверхностях пар трения формируется эластичная и адаптирующая «геометрию» этих поверхностей пленка-покрытие, также значительно снижающая коэффициент трения.

Вернемся к маркировкам. Во-первых, энергосберегающие моторные масла, как правило, имеют относительно низкую высокотемпературную вязкость по стандарту SAE J300 – обычно это 0W-20, 0W-30, 5W-20 или 5W-30. Мы уже рассказывали, что, помимо вязкости по SAE, на упаковке обычно указывается сертификация по стандарту Американского института нефти API. Например, SL/CF, где первая буква в каждой паре обозначает тип двигателя: S – бензиновый (Spark ignition), С – дизельный (Compression ignition). Если масло относится к классу энергосберегающих, в самом конце этой строки ставится аббревиатура ЕС – Energy Conserving (или RC – Resource Conserving). То есть полностью обозначение будет выглядеть: SAE 5W-30 SL/CF (RC). В классификации масел по стандарту Ассоциации европейских производителей автомобилей АСЕА для обозначения энергосберегающих масел выделены отдельные категории А1, А5 (для бензиновых двигателей), В1-02 и В5-02 (для легковых дизельных), а также С1, С2, С5 (для бензиновых и легковых дизельных двигателей). В международной же классификации ILSAC (Комитета по стандартизации и одобрению смазочных материалов), разработанной совместно американскими и японскими автопроизводителями, энергосберегающими являются масла всех классов и обозначаются символами GF-6, GF-5 и ниже. То есть в этом случае полное обозначение может выглядеть как-то так: SAE 5W-20, ILSAC GF-5/API SN-RC

На разные случаи жизни

Кстати, в конце предыдущей части приведен вполне конкретный пример: такое масло есть в современной линейке Synthetic бренда G-Energy. За десять лет своего присутствия на рынке G-Energy удалось сделать важнейший шаг – разработать собственное синтетическое базовое масло G-Base. Важен этот шаг потому, что способны на него лишь наиболее передовые, серьезные компании, имеющие достаточные технологические возможности, ведущие наукоемкие исследования и разработки.

А уже на основе G-Base, используя уникальные пакеты присадок, под брендом G-Energy смогли создать целую линейку синтетических масел, соответствующих самым высоким и самым разнообразным требованиям. А зачастую и превосходящих эти требования.

К примеру, маркировку SAE 0W-20, ILSAC GF-5/API SN RC можно увидеть на упаковке масла G-Energy Synthetic Far East, разработанного специально для автомобилей японского и корейского производства и учитывающего все особенности их двигателей (в частности, некоторые отличия используемых пластиков и резин). Хоть для упомянутых в предыдущей части роторных двигателей Mazda в составе гибридных силовых установок! Маркировка SN здесь, как мы помним, дает понять, что масло ориентировано на бензиновые двигатели. А ILSAC GF-5 указывает на то, что оно относится к классу энергосберегающих. Кстати, конкретно у этого масла есть и другие варианты вязкости SAE – 5W-20, 5W-30 и 10W-30.

В линейке Synthetic на основе того же базового масла G-Base есть и другие продукты, созданные благодаря уникальным наборам присадок, а фирменная технология ACF (Adaptive Components Formula) позволяет усиливать необходимые свойства синтетических масел G-Energy в режимах повышенной нагрузки. Масло Synthetic Super Start 5W-30 не только имеет улучшенные низкотемпературные свойства и обеспечивает более легкий пуск двигателя, но и ориентировано на современными дизельные двигатели с сажевыми фильтрами DPF и катализаторами.

Как нетрудно догадаться из названия, масла G-Energy Synthetic Active (а они представлены в двух вариантах вязкости – 5W-30 и 5W-40) учитывают тонкие особенности мощных, высокооборотистых двигателей и спортивного стиля вождения, обеспечивая максимальную защиту. Зато для двигателей с сажевыми фильтрами они, наоборот, не рекомендуются. Как и масло Synthetic Long Life 10W-40, разработанное как для новых двигателей, так и для двигателей, уже имеющих солидный пробег. Для него была подобрана формула, минимизирующая расход на угар и повышающая степень защиты от износа, что обеспечивает двигателю не только долгий срок службы, но и чистоту.

Тот самый виток спирали

Рано или поздно электромобили все-таки возьмут верх – сомневаться в этом не приходится. Собственный бензиновый (или тем более дизельный) автомобиль – да еще и не автопилотируемый – вообще станет атрибутом роскоши! Да-да, именно такие предположения были высказаны в ходе футурологического исследования, проведенного Bentley совместно с одним из престижнейших британских университетов. К концу ХХI века автомобили с ДВС могут вернуться в статус «дорогой игрушки не для всех» – совсем как на заре автомобилизации, в конце XIX века. Такой вот виток эволюции. Рынок собственно моторных масел тоже станет нишевым.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто