Двигатель на воде для авто

Содержание

Автомобиль на воде своими руками.

fd216d8s 100

8c50778s 960

из сети)
Бензиновый двигатель был изобретен очень давно, но используется в наше время. Люди всегда хотели, чтобы двигатель был мощным и экономичным. Было придумано много различных вариантов. Но не все используются в современном мире.
Здесь будет рассмотрена подача газа в двигатель. Этот газ называют по-разному: коричневый газ, газ Брауна, гидроген, водяной газ. Он делается на основе воды. Главное преимущество системы Брауна – улучшение экологии окружающей среды.
Бензин экономится из-за его лучшего горения. Часто только около 15% энергии бензина, превращается в механическую энергию в двигателе внутреннего сгорания. Если двигатель дополнить газом Брауна, то это приведет к тому, что топливо будет лучше сгорать, а доступная энергия из бензина преобразуется в механическую. И это не нарушает законов термодинамики.
Когда газ сгорает, получается сухой водяной пар. Он служит для того, чтобы очистить клапанно-поршневую группу от нагара, улучшить теплообмен между клапаном и седлом. В результате этого ресурс двигателя увеличивается. Из-за того, что расход топлива уменьшается, увеличивается пробег топливных форсунок, межсервисный пробег увеличивается, а также загрязнение масла уменьшается.
Один литр воды становиться шире на 1866 литра горючего газа. 30-40 часов можно проехать на каждом литре.

Чтобы в домашних условиях разложить воду на газ нужны: катализатор, дистиллированная вода, электричество, электроды.
Способов сделать автомобиль на воде своими руками множество. Но мы остановимся на одной, более простой конструкции.
Чтобы собрать генератор Брауна надо взять оргстекло 5 мл, 20 метров проволоки из нержавейки (марка 316), трубку из винила диаметром 4мл и шесть банок объемом 700 мл. Катализатором можно сделать КаОН или NaOH (резиновые перчатки используйте обязательно, так как эти вещества являются щелочью).

Можно использовать только одну банку, вместо шести, но обязательно учитывать следующие правила:
-надо, чтобы получилось строго определенное количество газа. Например, вам понадобиться 0,7-1,5 литра газа в минуту при условии, что у вас двигатель 1,5 л;
-температура электролита и количество газа сильно зависит от напряжения на электродах. Электролит может нагреться до 60 градусов уже через два часа при 12В питания. Это будет много, поэтому лучше подать 6В, а не 12В. Чтобы это сделать, нужно включить две банки одну за другой. Но тогда упадет количество производимого газа. Надо взять больше банок – лучше шесть (все параллельно и две последовательно).

Дальше все очень легко – надо вырезать пластинки и соединить их крест накрест. Потом обмотать их проволокой (2 электрода) и закрепить к крышке. На крышке нужно обязательно сделать штуцер, чтобы газ выходил и специальные болты, чтобы провода крепились к электродам. Электроды должны быть не замкнуты между собой, а крышка сидеть герметично при закрытии банки.
В банки нужно залить приблизительно пол-литра дистиллированной воды, предварительно добавив полчайной ложки КаОН. Получается, что 6 банок должны потреблять ток примерно 6В при правильном соединении. Эта система должна работать на любом автомобиле.

Источник

Как работает машина на воде(правда или ложь).

Когда вы встречаете кричащие заголовки о том, что очередной изобретатель изобрел машину, которая ездит на воде, вы конечно удивляетесь. Ну как вода может быть топливом? Вообще-то никак не может, но журналисты как всегда хитрят, чтобы привлечь внимание.
На самом деле все проекты двигателей на воде, к воде имеют отдаленное отношение. Конечно, вода, это соединение водорода и кислорода. И да, водород может быть топливом. Но чтобы разорвать межатомные связи и добыть из воды водород нужно затратить кучу энергии, такой электролиз происходит еще и с выделением тепла. А второе начало термодинамики гласит, что нельзя передать тепло от более холодного к более горячему. В общем, такая схема более чем неэффективна.

Так что же скрывается за водяными автомобилями? Дело в том, что в качестве топлива используется не вода, а водяные растворы солей. Если немного упростить, то двигатель работает на соленой воде. Что такое соленая вода? Это электролит, как в обычных батарейках. А из электролита извлечь энергию проще, чем из воды.

Фактически двигатель на соленой воде, еще используется название «потоковая батарея», работает по тому же принципу, что и топленный элемент использующий водород (есть еще топливные элементы использующие метанол, щелочи или кислоты).

Упрощенная модель выглядит так. Соляной раствор протекает через мембрану, где раствор вступает в реакцию окисления, производя отрицательно заряженные электроны и положительно заряженные, создавая при этом электрический ток. То есть имеем батарейку в которой соляной раствор не замкнут внутри оболочки и таким образом, залить в бак такого топлива можно столько, сколько позволит сам бак. Как и в случае с другими типами топливных элементов, в этом используется два типа жидкости, то есть заправлять придется 2 отдельных бака.

Один раствор нужен для реакции окисления, другой, для реакции восстановления. Таким образом, вся система представляет собой скорее аккумулятор, так как может быть перезаряжена, ну на худой конец жидкость в баки можно залить совсем новую.

Самое интересное, что история топливных элементов сама по себе не нова и. Принцип был открыт еще в 19-м веке, а первые работающие топливные элементы появились в 50-60-х годах двадцатого. Многие из них даже использовались для питания оборудования на космических аппаратах.

КПД топливных элементов и двигателей на их основе выше, чем у двигателей внутреннего сгорания, ведь превращение химической энергии в электрическую идет без сгорания топлива, а движущихся частей (на трение в которых расходуется энергия) в такой системе очень мало.

В отличие от водородных топливных элементов, вариант машины использующей растворы солей выглядит более перспективным, так как химическая промышленность и инфраструктура более готова к производству соляных растворов, чем к производству водорода.

Когда же мы машины начнут ездит на соленой воде, спросите вы? Они уже ездят. Компания nanoFlowcell из Лихтенштейна утверждает что уже сертифицировала свои автомобили Quant e-Sportlimousine, Quantino и Quant F для стран Евросоюза.
Динамика у e-Sportlimousine впечатляющая (для тех, кто привык к бензиновым двигателям), за 2,8 секунды электромобиль способен разогнаться до 100 при максимальной скорости — 350 км/ч, а ее двигатель способен развивать мощность 680 киловатт (что соответствует 920 л.с.) и крутящий момент 2900 Нм. При этом запас хода обещают в 600 километров на одной зарядке.

Quantino, модель предназначенная для «простых смертных» имеет более скромные характеристики — 143 лошадиные силы, но запас хода увеличен до 1000 км. Скорее всего именно скромный Quantino станет первым серийным «автомобилем на воде». О том, когда такие машины появятся на рынке, пока достоверной информации нет. Но видимо ждать осталось не долго.
Но если вы вообще не намерены ждать, то в интернете вы можете купить машинку игрушку которая ездит на растворе обычной столовой соли всего за пару долларов. Так сказать для «знакомства с технологией».

Источник

Водородный двигатель для автомобиля, как избавиться от нефтяной зависимости

main 2

Запасы нефти подходят к концу, что вынуждает человечество искать альтернативные источники энергии, способные заменить «черное золото». Одним из решений является применение водородного двигателя, отличающегося меньшей токсичностью и большим КПД. Главное то, что запас сырья для производства горючего почти неограничен.

Когда появился водородный двигатель? В чем особенности его устройства, и каков принцип действия? Где применяется такая технология? Реально ли сделать такой мотор своими руками? Эти и другие вопросы рассмотрим ниже.

Когда появился водородный двигатель, основные компании, ведущие его разработку

Интерес к применению водорода появился еще в 70-х годах в период острого дефицита топлива. Первым современным разработчиком, который представил двигатель для автомобиля работающий на водороде, стал концерн Toyota. Именно он в 1997 году выставил на всеобщее обозрение внедорожник FCHV, который так и не пошел в серийное производство.

1510748943 1

Несмотря на первую неудачу, многие компании продолжают исследования и даже производство таких автомобилей. Наибольших успехов добились концерны Тойота, Хендай и Хонда. Разработки ведут и другие компании — Фольксваген, Дженерал Моторз, БМВ, Ниссан, Форд.

1510748888 2

1510748965 3

В будущем планируется заменить такими поездами 4000 дизельных составов Германии, перемещающихся по участкам дорог без электрификации.

Интерес к покупке Coranda iLint уже проявила Норвегия, Дания и другие страны.

Особенности водорода как топлива для двигателя

В ДВС бензин смешивается с воздухом, после чего подается в цилиндры и сгорает, в результате чего происходит перемещение поршней и движение транспортного средства.

Применение водорода в виде топлива имеет ряд нюансов:

С учетом перечисленных нюансов применять H2 в чистом виде для двигателя внутреннего сгорания нельзя. Требуется внесение конструктивных изменений в ДВС и установка дополнительного оборудования.

Устройство водородного двигателя

Автомобили с двигателем работающем на водороде делятся на несколько групп:

Как отмечалось выше, конструкция мотора, работающего на H2, почти не отличается от ДВС за исключением некоторых аспектов.

Главной особенностью является способ подачи горючего в камеру сгорания и его воспламенения. Что касается преобразования полученной энергии в движение КШМ, процесс аналогичен.

1510748904 4

Принцип работы

Принцип работы водородных двигателей стоит рассмотреть применительно к двум видам таких установок:

Водородные моторы внутреннего сгорания

В ДВС из-за того, что горение бензиновой смеси осуществляется медленнее, топливо попадает в камеру сгорания раньше достижения поршнем своей верхней точки.

В водородном двигателе, благодаря мгновенному воспламенению газа, удается сместить время впрыска до момента, пока поршень начнет возвратное движение. При этом для нормальной работы мотора достаточно небольшого давления в топливной системе (до 4-х атмосфер).

В оптимальных условиях водородный мотор способен работать с питающей системой закрытого вида. Это значит, что в процессе образования смеси атмосферный воздух не применяется.

После завершения такта сжатия в цилиндре остается пар, который направляется в радиатор, конденсируется и становится водой.

Реализация варианта возможна в случае, если на машине смонтирован электролизер — устройство, обеспечивающее отделение водорода от H2O для последующей реакции с O2.

1510748902 5

Воплотить в реальность описанную систему пока не удается, ведь для нормальной работы двигателя и снижения силы трения применяется масло.

Последнее испаряется и является частью отработавших газов. Так что применение атмосферного воздуха при работе водородного двигателя пока необходимо.

Двигатели на водородных элементах

Принцип действия таких устройств построен на протекании химических реакций. Кожух элемента имеет мембрану (проводит только протоны) и электродную камеру (в ней находится катод и анод).

В анодную секцию подается H2, а в катодную камеру — O2. На электроды наносится специальное напыление, выполняющее функцию катализатора (как правило, платина).

Под действием каталитического вещества происходит потеря водородом электронов. Далее протоны подводятся через мембрану к катоду, и под влиянием катализатора формируется вода.

Из анодной камеры электроны выходят в электрическую цепь, подключенную к мотору. Так формируется ток для питания двигателя.

1510748911 6

Где использовались водородные топливные элементы?

Особенность топливных элементов водородного типа —способность производить энергию для электрического мотора. Как результат, система заменяет ДВС или становится источником бортового питания на транспортном средстве.

Впервые топливные элементы были использованы в 1959 году компанией из США.

Если говорить в целом, топливные элементы применяются:

1510748969 8

Также водородные топливные элементы нашли применение на вилочных погрузчиках, велосипедах, скутерах, мотоциклах, тракторах, автомобилях для гольфа и другой технике.

1510748922 9

Преимущества и недостатки

Чтобы понять особенности и перспективы водородного двигателя в автомобиле, стоит знать его плюсы и минусы. Рассмотрим их подробнее.

1510748889 10

Также к плюсам стоит отнести:

Недостатки водородного двигателя:

Кроме уже рассмотренных выше, стоит выделить еще ряд недостатков:

Опасность водородного топлива

В рассмотренных выше недостатках упоминалось об опасности применения водородного топлива для двигателя. Это главный минус новой технологии.

В сочетании с окислителем (кислородом) возрастает риск воспламенения водорода или даже взрыва. Проведенные исследования показали, что для воспламенения H2 достаточно 1/10 части энергии, необходимой для зажигания бензиновой смеси. Другими словами, для вспыхивания водорода хватит и статической искры.

Еще одна опасность заключается в невидимости водородного пламени. При горении вещества огонь почти незаметен, что усложняет процесс борьбы с ним. Кроме того, чрезмерное количество H2 приводит к появлению удушья.

Опасность в том, что распознать данный газ крайне сложно, ведь у него нет запаха и он полностью невидим для человеческого глаза.

Кроме того, сжиженный H2 имеет низкую температуру, поэтому в случае утечки с открытыми частями тела высок риск серьезного обморожения. Находится данный газ должен в специальных хранилищах.

1510748968 12

Из рассмотренного выше напрашивается вывод, то водородный двигатель опасен, и использовать его крайне рискованно.

На самом деле, газообразный водород имеет небольшой вес и в случае утечки он рассеивается в воздухе. Это значит, что риск его воспламенения минимален.

Современные автомобили с водородными двигателями

Возможность применения двигателей на водородном топливе заинтересовала многих производителей. В результате в автомобильной индустрии появляется все больше машин, работающих на данном газе.

К наиболее востребованным моделям стоит отнести:

Трудности в эксплуатации водородных ДВС

Главным препятствием для внедрения новой технологии является чрезмерные расходы на получение водородного топлива, а также на приобретение комплектующих материалов.

Простейший способ получения водорода — электролиз воды. Если производство H2 требуется в промышленных масштабах, не обойтись без высоких энергетических затрат.

Чтобы повысить рентабельность производства, требуется применение возможностей ядерной энергетики. Чтобы избежать рисков, ученые пытаются найти альтернативы такому варианту.

Перемещение и хранение требует применения дорогих материалов и механизмов высокого качества.

Нельзя забывать и о других сложностях, с которыми приходится сталкиваться в процессе эксплуатации:

Будущее водородных двигателей

Применение H2 открывает большие перспективы и не только в автомобильной сфере. Водородные двигатели активно применяются на ж/д транспорте, на самолетах и вертолетах. Также они устанавливаются на вспомогательной технике.

Интерес к разработке таких моторов проявляют многие концерны, о которых уже упоминалось выше — Тойота, БМВ, Фольксваген, Дженерал Моторс и другие.

Уже сегодня на дорогах встречаются реальные автомобили, которые работают на водороде. Многие из них рассмотрены выше — БМВ 750i Hydrogen, Хонда FSX, Тойота Mirai и другие.

1510748890 41

К работе подключились почти все крупные концерны, которые пытаются найти свою нишу на рынке.

Главным недостатком остается высокая цена H2, нехватка АЗС, а также дефицит квалифицированных работников, способных обслуживать такую технику. Если имеющиеся проблемы удастся решить, машины с водородными двигателями обязательно появятся на наших дорогах.

Конкурирующие технологии

Внимание к моторам на водороде развеивается по той причине, что у технологии имеются конкуренты.

Вот только некоторые из них:

Можно ли сделать своими руками?

Технология работы двигателя на газ известна давно, и многие концерны достигли успехов в вопросе внедрения водородных двигателей. Над совершенствованием классического ДВС задумались и народные умельцы.

Суть заключается в подаче в камеру сгорания специального газа. Такое устройство носит название системы Брауна. При этом бензин также подается в двигатель, но смешивается с газом, что обеспечивает лучшее горение.

В результате появляется водяной пар, очищающий клапана и поршни двигателя от нагара, улучшающий характеристики мотора и повышающий его ресурс.

Чтобы своими руками разложить воду на газ, требуется катализатор, дистиллят, электроды и электричество.

1510748911 46

Конструкция собирается из подручных материалов. Допускается применение одной банки, но лучше использовать шесть.

После вырезаются пластинки и объединяются по принципу крест-накрест. Далее они обматываются проволокой и крепятся на крышке. Важно, чтобы электроды не замыкались между собой.

На последнем этапе банки заполняются электролитом и катализатором. Такая схема может работать на любом автомобиле.

Если же говорить о полноценном водородном двигателе, то в гаражных условиях сделать его конечно же не получится из-за сложности технологии.

Источник

Двигатель на воде: мифы и реальность.

smtDN 68oNh4w4N1bCHoK5wVy9A 100

Начнем со сложного- с подачи воды в двигатель. На сайте есть много людей, которые уж очень рекламируют данную тему. По сути, большинство их доводов- чистой воды демагогия или просто выдача желаемого за действительность. Мне эта тема не давала покоя, и я решил сам все поверить, собственно, так и написал эту статтю.

В интернете существует много различных мифов, как повысить мощность двигателя, сократив при этом расход топлива. Это и различные «экотопы», и магниты на бензопроводе, и всякие гомогенизаторы, завыхрители и т.д. В 95% все эти «гениальные» изобретения, которые обещают повысить мощность на 20%, снизить расход на 30% чистой воды шарлатанство, которое в лучшем случае не сделает ситуацию хуже.
Среди всех этих сомнительных улучшений есть системы впрыска воды, причем, как и от СНГ производителя («Водокар»), который приводит вполне серьезные, хоть и антинаучные аргументы (термолиз воды в цилиндре ДВС), так и от серьезных тюнинговых компаний (AEM)
Мало кто понимает сущность подобных систем и результат ее действия. Но тем не менее много кто берется высказать свое мнение, часто ошибочное. В целом все мнения делятся на отрицательные и положительные. Попробуем разобраться, обоснованы ли они.

Начнем с отрицательных:

1 впрыск воды в работающий двигатель обязательно приведет к гидроудару.
Гидроудар происходит когда в цилиндр попадает жидкость (в нашем случае вода) в количестве которое с избытком заполняет объем камеры сгорания когда поршень находится в верхней мертвой точке. Допустим, при движении у верхнюю мертвую точку в конце 2 такта, когда впускные и выпускные клапаны закрыты, поршень встречает встречает воду в избыточном количестве. Согласно законам физики, жидкости (в нашем случае вода) не сжимаются, и вода для поршня стает непреодолимой преградой, и шатун, вращаемый довольно инерционным (в связке с маховиком) коленвалом, гнется или ломается, обычно пробивая при этом блок цилиндров, и мы видим при этом так называемую «руку дружбы.»

2 Впрыск воды приведет к ржавлению цилиндров.
Впрыск воды серийно использовался на немецких истребителях Messerschmitt (система MW 50), также были проведены полномасштабные испытания на авиадвигателе АШ 62. Следов ржавчины не было обнаружено.

3. Вода будет разжижать масло в картере.
Вода в цилиндре перебывает исключительно в газообразном состоянии, а соответственно, разжижает масло не больше чем бензин в топливной смеси.

А теперь положительные:

1. В цилиндре вода под действием высокой температуры разлагается на кислород и водород, которые явно способствуют горению, повышая КПД двигателя и увеличивая его экономичность.

На самом деле температура в камере сгорания в момент рабочего такта (приблизительно от 1000 С до 1800 С) значительно ниже таковой, необходимой для термолиза воды (2500 С)

2. Вода способствует охлаждению ГБЦ и цилиндра

Вполне логичное предположение, подтвержденное испытаниями как и в США так и в СССР

3. избавление от нагара на стенках камеры сгорания

Вода весьма эффективно чистит нагар. Подтверждено испытаниями.

4. вода является эффективным антидетонатором

Вода, охлаждая топливную смесь и камеру сгорания, а также являясь инертной средой в цилиндре очень успешно подавляет детонацию, делая возможным работу двигателя на низкооктановых топливах, высоком давлении наддува, сильно обедненных смесях.

А теперь кратко о испытаниях и серийных системах. Испытаниями занимались как и в США так и в СССР. На основание испытаний были сделаны следующие выводы:

1. Впрыск воды снижает температуру ГБЦ и поршня.
2. Впрыск воды эффективно подавляет детонацию, а, соответственно, позволяет:
А) применять в эксплуатации низкооктановый бензин.
Б) увеличивать давление наддува, повышая при этом мощность а также КПД двигателя, снижая при этом удельный расход топлива.
3. Уменьшение вредных выбросов в атмосферу
А) за счет более эффективного сгорания топлива.
Б) в случае работы двигателе на бензине с более низким октановым числом, в котором
Отсутствуют антидетонаторы на основе вредных веществ типа тетраэтилсвинца.

Наиболее известной системой впрыска воды, устанавливаемой серийно была MW 50, устанавливаемая на двигатели Daimler Benz 601 истребителя Messerschmitt bf-109.
Система состояла из бака, наполненного на 50% водой и 50% метанолом, который был необходим, чтобы избежать замерзания воды на больших высотах (в экстренных случаях допускалось использование чистой воды). Вода из бака подавалась в механический нагнетатель, охлаждая горючую смесь, отодвигая при этом зону детонации. При этом давление наддува повышалось с 1,3 ATA до 1,7 ATA. Мощность при этом возрастала 1575 л.с. до 1800 л.с. При этом также значительно повышался расход топлива. Всего за 1 полет MW 50 можно было включать 2 раза по 10 минут.
В США эксплуатировали похожую систему: впрыск воды позволял избежать детонации в режимах больших нагрузок. При этом обеднялась горючая смесь и оптимизировался процесс сгорания в цилиндрах (более полное, а значит и более эффективное сгорание топлива)
В СССР подобные системы серийно не эксплуатировались, но были проведены полномасштабные стендовые и летные испытания, которые подтвердили эффективность впрыска воды.
На автомобилях впрыск воды не прижился: он использовался лишь на некоторых моделях Chrysler и SAAB

Источник

userinfo v8marafonec

Марафонец

Бег на месте к горизонту

Двигатель на воде давно создан — он запрещён! Чем заменяют подобные изобретения.

Водяной автомобиль существует гипотетически, и никак иначе! Но, это — неправда, в своей сути уже существует подобное изобретение. Как только, появляются новые и передовые технологии, затрагивающие интересы монополистов, — предприятия, осмелившиеся начать производство революционных технологий – разоряются.

Прорывная технология

В далёком 2008 году, японская компания Genepax, представляет на автомобильной выставке в Осаке, автомобиль, работающий на воде. Своё изобретение, предприимчивые японцы, запатентовали в Европейском патентном ведомстве. Можно вдохнуть свободно: наконец-то, прорыв!

Но, не тут-то было. Ходу этому изобретению не дали. Наоборот, изобретение вызывает, в определённых кругах, досаду и негодование. Оно способно негативно повлиять на способ ведения устоявшегося бизнеса владельцев компаний в энергетической отрасли.

Что же осмелились создать японцы — расплата за смелость

Японские изобретатели создали автомобиль, работающий на обычной воде. Вода может быть из крана или любого источника. В пути — это может быть и бутылка с водой, купленная в ближайшем магазинчике.

Для того, чтобы он начал движение, — ему нужно всего один литр воды, и один час езды обеспечен. Скорость автомобиля до 80 километров в час.

Воду нужно залить в бак, соединённый с устройством, которое посредством электрического тока, расщепляет воду на кислород и водород.

Так генерируется топливо – перекись водорода. Также генератор производит необходимую электроэнергию, извлекая из воды водород, высвобождая электроны.

Такое топливо даёт в два раза больше энергии двигателю, чем бензин. Продуктом распада этой реакции является, всего лишь – водяной пар.

Как в народе говорят: не прошло и года. Через год компания странным образом разоряется и, — перестаёт существовать.

Почему все молчат и ничего не делают?

Конечно, эта идея не нова! По всему миру изобретатели создают подобные прототипы, усовершенствуя и внося коррективы в своё идеальное транспортное средство.

Весь казус состоит в том, что такие автомобили единично передвигаются по дорогам, а оплаченное общество «экспертов», продолжает кричать о мошенничестве.

Есть и другой выход в создавшейся неудобной ситуации для монополистов. Он подразумевает: запугивание, подкуп, выкуп лабораторий, которые занимаются альтернативными источниками энергии.

Какой выход для всех нас?

И вот, в 2017 году – «прорыв»! Предприимчивые монополисты решились на инновации. Появляется «новый» серийный автомобиль компании Mercedes-Benz, работающий на водородном топливе.

Следом, не отстаёт японская компания Mirai, заявляя о безостановочном ходе своего автомобиля на 480 километров, который также заправлен водородом.

Да, все они будут заправляться водородом на специальных заправках (ведь, нужно же, что-то продавать, вместо бензина).

Как говорят, эти автомобили мощнее и их ждёт будущее, несмотря на то, что они более взрывоопасны, чем бензиновые.

PS: Так напоминает историю с электромобилями.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто