Двигатель экотек на каких машинах

Концерн GM раскрыл детали новой линейки моторов Ecotec

Новый Chevrolet Cruze должен появиться к концу нынешнего года, причём сначала на китайском рынке. На Крузе покупатели увидят пару двигателей из новой серии.

Грандиозное обновление моторов Опеля — лишь часть плана GM по выводу в свет глобального семейства Ecotec новой генерации. Особое место занимает группа модульных агрегатов малого объёма (от 1,0 до 1,5 л). Про однолитровый трёхцилиндровый мотор 1.0 VVT DI Turbo (LE1) мы подробно рассказывали. Но теперь обнародовано больше деталей и особенностей всех его «родственников». Линейка эта, кстати, будет включать 11 двигателей, выдающих от 75 до 165 л.с. и от 95 до 250 Н•м. Проектированием их занимались 300 человек в нескольких центрах GM в США, Германии, Китае и Южной Корее. Координация шла из исследовательского центра в Мичигане.

Все двигатели из нового семейства обладают одним диаметром цилиндров (74 мм), единым расстоянием между ними, одинаковой высотой блока и множеством других общих параметров и узлов, что упрощает массовое производство. Почти все моторы этой линии оснащены непосредственным впрыском (но будут и модели с обычным распределённым). Фазовращатели на впуске и выпуске, четыре клапана на цилиндр, впускной коллектор переменной длины, интегрированный в головку блока выпускной коллектор — лишь некоторые общие особенности. Меняется ход поршня и степень сжатия (от 10,0:1 на моторах с наддувом до 12,5:1 на «атмосферниках»).

Жёсткий алюминиевый блок цилиндров, выполненный методом литья под высоким давлением, рассчитан не только на подавление шумов, но и на смещение их в сторону более высоких частот, которые легче изолировать шумопоглощающими материалами. С той же целью ужесточены допуски на изготовление коренных подшипников. Варианты с турбонаддувом получили кованый коленвал. Снизить трение и шум призваны струи масла, подаваемые к поршням. Бесшумная цепь с перевёрнутыми зубьями, оптимизированный привод навесных агрегатов, потребовавший меньшее натяжение ремня, чем раньше, масляный насос в сборе (смонтированный внутри поддона), акустически изолированная топливная рампа — здесь много решений, снижающих шум. Даже турбокомпрессор проектировался так, чтобы уменьшить характерный для турбин свист.

К 2017 году новую линейку двигателей будут выпускать пять заводов в США, Венгрии, Китае, Мексике и Южной Корее, а суммарное производство достигнет 2,5 миллиона штук. Новые «экотеки» получат прописку под капотами 27 моделей пяти марок. В частности, следующий Chevrolet Cruze оснастят «атмосферником» 1.5 и турбомотором 1.4 (не путать его с агрегатом 1.4 Ecotec прежней генерации, появившемся на Крузе нынешнего поколения). Отдача этой пары составит 113 л.с. (146 Н•м) и 148 л.с. (235 Н•м). Причём вместе с турбомотором дебютирует новый «робот» с двумя сцеплениями.

Источник

1.6 16V Ecotec / Twinport / Turbo (GM) – история, проблемы и неисправности

15dd27as 100

Официальным дебютом двигателя Ecotec считается 1994 год. Но на самом деле его можно было встретить годом ранее в немного другом исполнении в самой сильной версии Opel Corsa — GSi. Что интересно, разработкой его головки занималось подразделение GM – Lotus.

5b37fc9s 960

Позже двигатели Ecotec (Emissions Control Optimisation Technology) приобрели ряд технических решений, направленных на снижение выбросов вредных веществ в атмосферу (например, клапан рециркуляции отработавших газов EGR или система AIR). Также был заменен впускной коллектор – с пластикового на алюминиевый. В 2003 году двигатель был подвергнут дальнейшей модернизации, в ходе которой, появились системы изменения геометрии впускного коллектора и изменения фаз газораспределения. Это дало повод для ввода нового названия – TwinPort.

В связи с возрастающей популярностью даунсайзинга было принято решение оснастить двигатель турбонагнетателем. В ходе такой доработки мотор лишили системы изменения геометрии впускного коллектора, но сохранили систему изменения фаз газораспределения. С тех пор двигатель известен, как 1.6 Turbo. В 2011 году появилась его самая мощная 210-сильная модификация, которая использовалась в Opel Corsa OPC.

31b7fc9s 960

1,6-литровый мотор в различных вариациях использовался во многих моделях, принадлежащих или связанных с GM. Opel с самого начала применял его почти во всем модельном ряду: Corsa, Astra, Vectra и т.д. Свое применение он нашел в автомобилях Chevrolet (Daewoo) Lanos (D-TEC), Chevrolet Cruze и Fiat Stilo. Двигатели Экотек развивали мощность от 100 до 124 л.с. Последняя его версия широко использовалась в Шевроле Круз. TwinPort обеспечивал 105-115 л.с., а самый сильный Turbo – 150-210 л.с. К общим достоинствам можно отнести разумный расход топлива, довольно современные технологии и, как правило, недорогие запчасти и ремонт.

Для «перевода на газ» лучше подходит Ecotec. В Твинпорт существует риск повреждения головки блока. Не рекомендуется «газификация» турбоверсии мотора, хотя на рынке имеются системы, способные работать с двигателями данного типа. Эксперты подчеркивают, что такие технологии пока еще не совершенны.

В плане динамики самым лучшим, конечно же, является мотор с турбонаддувом. Но и безнаддувный агрегат, если автомобиль не перегружен, вполне бодрый.

93b7fc9s 960

Как правило, вероятность возникновения проблем зависит от внимательности и заботливости своего хозяина. В возрастных и хорошо побегавших моторах увеличивается расход масла из-за износа поршневых колец. В двигателях TwinPort порой отказывает датчик положения заслонок на входе и сами заслонки. Производитель предусматривает замену коллектора в сборе – около 600 долларов. Но есть мастерские, готовые отремонтировать заслонки за 250 долларов. В вариантах с турбонаддувом необходимо обратить внимание на состояние турбины.

Стоит ли опасаться автомобилей с таким двигателем? Определенно нет. Несмотря на сравнительно сложную конструкцию силового агрегата, даже в последних более технологичных вариациях не наблюдается никаких серьезных неисправностей. А на фоне многих конкурентов он считается довольно надежным.

Источник

Особенности двигателей GM Ecotec

100

Двигатели семейства ECOTEC

2491a84s 960

Двигатели семейства ECOTEC (ECOnomy, ECOlogy and TEChnology) были разработаны в Норвиче (Великобританя) на базе лаборатории фирмы Lotus, известной своими достижениями в автоспорте.

Характерными особенностями двигателей семейства ECOTEC являются четыре клапана на цилиндр с расположенной по центру свечой зажигания. Соответственно головка блока имеет два распредвала (схема DOHC). Распредвалы приводятся зубчатым ремнем от коленчатого вала. Тепловой зазор клапанов обеспечивается гидрокомпенсаторами автоматически.

Двигатели ECOTEC оснащены системой электронного управления рециркуляции выхлопных газов (EGR). При которой часть выхлопных газов подаются обратно во впускной коллектор через систему рециркуляции и подвергаются повторному дожиганию в цилиндрах, что снижает потребление топлива и выброс вредных веществ с выхлопными газами.

Двигатели ECOTEC просты и надежны в эксплуатации. Однако есть несколько моментов на которые следует обратить внимание.
Зубчатый ремень привода ГРМ и ролики натяжителя должны быть заменены при плановых регламентных работах. При появлении признаков износа ремня ГРМ его следует заменить досрочно. Дело в том, что при обрыве ремня ГРМ мотор получет значительные повреждения в результате встречи клапанов с поршнями.
Моторы 1.6 (X16XEL, X16XE, Z16XE) из-за конструктивных особенностей ЦПГ и головки блока, имеют склонность к повышенному расходу масла.
Другим относительно слабым местом является клапан рециркуляции выхлопных газов (EGR). Неисправность этого устройсва приводит к нестабильному холостому ходу и неуверенному запуску.

Технологии Twinport и PDA (Port DeActivation)

b991a84s 960

1591a84s 960

Официальный сайт GM дает такое определение:
Остроумная технология, разработанная компанией Opel для бензиновых двигателей рабочим объемом до 1,6 литра с четырьмя клапанами на цилиндр, позволяющая экономить топливо. Управление геометрией впускного коллектора при помощи дроссельных клапанов, установленными в одном из двух впускных портов каждого клапана, а также высокая степень рециркуляции отработавших газов позволяют снизить расход топлива при обычных условиях вождения на величину до 10 процентов. В то время как при частичных нагрузках до 25 процентов рабочей смеси составляют отработавшие газы, максимальная мощность и приемистость двигателя при полной нагрузке остается неизменной.

Для начала заметим, что такая «остроумная технология» применялась в автомобилях Toyota еще 80 годах прошлого века. Система T-VIS (Toyota Variable Intake System) подозрительно похожа на разработку фирмы Opel, примененную в двигателе Z16XEP, которую сначала называли PDA (Port DeActivation). Но видимо слово deactivation навевало покупателей на грустные мысли и было решено заменить название на загадочное Twinport.

В чем суть технологии и зачем она нужна.
Дело в том что трудно создать одинаково хорошие условия для приготовления топливо-воздушной смеси во всем диапазоне оборотов и нагрузок двигателя. Конечно инженеры разработчики стараются спроектировать впускной тракт двигателя так что бы достичь максимальных результатов и по мощности и по экономичности. Но это к сожалению взаимоисключающие целевые установки. Одной из проблем, с которой встречаются разработчики, это низкая скорость воздушного потока, направляемого в цилиндры. Из за этого смесеобразование происходит не достаточно качественно, что приводит к худшему сгоранию смеси. Если уменьшить сечение впускных каналов, то скорость конечно увеличится, но на высоких оборотах уменьшенные каналы не смогут предоставить нужного количества воздуха. Отсюда родилась идея сделать впускной тракт с изменяемой геометрией, в зависимости от нагрузки и оборотов. Эта идея была реализована в двигателях, имеющих два впускных клапана (двойной порт — twin port ), следующим образом. Один из впускных каналов перекрывается заслонкой на режимах частичных нагрузок и уменьшает общее сечение впускного канала. На режимах полных нагрузок заслонка открывается и мотор дышит в полную силу. Заслоночка ставятся непосредственно у одного из впускных клапанов (т.е. 4 цилиндра — 4 заслонки). Это создает дополнительный вращающий вектор и смесь завихрятся в цилиндре. Это так же создает предпосылки для лучшего смесеобразования.

2791a84s 960

Теперь уместно было бы вспомнить тот факт, что одним из способов улучшить топливную экономичность, является направление части выхлопных газов обратно в цилиндры. Это не уменьшает мощность двигателя, но улучшает его экономичность и детонационную устойчивость смеси. Этим занимается система EGR, которая представляет из себя клапан, открывающийся при достижении определенных оборотов. На малых оборотах открывать клапан для выхлопных газов не желательно как раз по причине плохих условий для приготовления смеси. Но с внедрением системы Twinport эти условия резко улучшились и появилась возможность открывать клапан EGR раньше и пропускать большую долю выхлопа обратно в цилиндры. Именно тут кроются те 6% топливной экономичности, которые отделяют двигатель Z16XE (без Twinport) от Z16XEP (c Twinport). Причем, что важно, экономия происходит в режиме частичных нагрузок, то есть в режиме городской езды.

Как работает Twinport.

c051a84s 960

Все заслонки во впускных каналах одновременно управляются вакуумным регулятором (2), через приводящую тягу (4). В свою очередь вакуумный регулятор управляется от блока управления двигателем, который и принимает решения в зависимости от нагрузки и оборотов. Контроль исполнения команд и реального положения заслонок возложен на датчик (5), который отслеживает положение приводящей тяги и угла поворота заслонок. Таким образом, считывая показания датчика, можно делать выводы о работоспособности системы в целом.

Несмотря на заверения представителей Opel, о эффективности Twinport на моторах малого объема, это не помешало им внедрить аналогичную по принципам систему в двигатель Z22YH с непосредственным впрыском. Принцип там аналогичный, за исключением лишь одного момента. Если в «классической» конструкции завихряется при подаче в цилиндры, топливно-воздушная смесь, то в Z22YH завихрятся только воздух, а топливо впрыскивается непосредственно в цилиндр. Возможно поэтому для этого мотора вспомнили старый термин PDA (Port DeActivation), которым стали называть такую реализацию системы. Еще одним конструктивным отличием стал привод вихревых заслонок от сервомотора.

d851a84s 960

1. Возвратный канал для рециркуляционных газов.
2. Уплотнительное кольцо
3. Уплотнительное кольцо
4. Сервомотор управления вихревыми заслонками
5. Вихревая заслонка
6. Тяга привода залонок.
7. Корпус коллектора.

Вот фрагмент дискусии с сервера astraclub.ru:

» — Я решил разобраться до конца в этом вопросе и надыбал этот узел твинпорта живьём. На YH менял заслонки неоднократно, поэтому он не понадобился.Никаких общих заслонок, изменяющих длину коллектора там нет.И там, и там перекрывается один впускной канал на каждый цилиндр.Системы аналогичны по принципу действия. Поскольку речь шла за 16XEP, напишу о нём. Сам коллектор состоит из двух частей — верхняя, предполагаю, и называется фланцем.В нём смонтированы: рампа форсунок (можно снять отдельно), заслонки (вот их снять без поломки вряд ли возможно — конструкция на вредных стопорах), пневмоклапан с электроклапаном (смонтированы в один узел, находится сбоку — можно демонтировать), далее соответственно ось привода заслонок и датчик положения (типичный ДПДЗ), стоящий отдельно. Разрежение подводится через вакуумную трубку. Нагара там в коллекторе — мама не горюй, а каналы подвода выхлопных газов от клапана рециркуляции вообще как забетонированные. На YH: заслонки меняются, привод меняется (там он смонтирован вместе с датчиком и электромагнитным клапаном в единый узел, а разрежение подводится прям из коллектора через штуцер в корпусе привода), соответственно ось заслонок. Всё. Ну и форсунок соответственно нет (оно и понятно — директор). Коллектор цельный в отличие от ХЕP. Общий принцип один и тот же — как говорится, те же яйца, только вид сбоку. На ХЕP обнаружил интересную вещь. Выработка на оси заслонок самая сильная (яйцо) на ближней к пневмоприводу заслонке, тогда как на самой дальней её практически нет.»

С 2006 года, для двигателей Z10XEP, Z12XEP и Z14XEP, датчик положения вихревых заслонок не устанавливается. Датчик служил для выдачи в систему управления двигателем сигнала обратной связи о положении управляющей заслонки.

Из-за отсутствия датчика определить положение управляющих заслонок с помощью системы TECH 2 становится невозможным. С 2006 года неправильное положение управляющей заслонки может быть установлено только по жалобам клиентов или в ходе пробной поездки следующим образом:

1. Автомобиль двигается рывками в режиме частичной нагрузки
Управляющая заслонка заблокирована в открытом положении
2. На полном газу перестала развиваться полная мощность
Управляющая заслонка заблокирована в закрытом положении

P.S. Очень часто систему Twinport путают с системой изменения длинны впускного коллектора. Действительно обе системы относятся к классу систем изменения геометрии впускного тракта. Принципиальная разница состоит в том, что в Twinport изменяется сечение канала, а в другом случае длинна. Устройство изменения длинны реализовано например в Z18XER (и X18XE1). Так же иногда Twinport путают с системой изменения фаз газораспределения CVCP (Continuous Variable Camshaft Phasing). Это две совершенно разные системы, использующие различные принципы управления смесеобразованием. Система CVCP реализована в двигателях Z18XER и Z16XER. Система Twinport реализована в Z16XEP, Z16XE1, Z14XEP, Z10XEP

VIS(Variable Intake System) — изменение геометрии впускного тракта.

Впускной тракт, который образуют последовательно воздушный фильтр, дроссель или карбюратор, впускной коллектор и клапана, существенно влияет на процессы наполнения цилиндров горючей смесью. Поток воздуха, проходящий по впускному тракту, подвержен колебаниям и образует совместно с деталями тракта колебательную систему. Таким образом процессы наполнения цилиндров сильно зависят от параметров этого колебательного контура. Добиться работы такой системы во всем диапазоне нагрузок и оборотов, крайне сложно. Отсюда пришла идея изменять параметры колебательной системы в процессе работы. Исследования показывают, что при коротком впускном коллекторе мотор лучше работает на высоких оборотах, при низких оборотах более эффективен длинный впускной тракт. Естественно напрашивалось решение сделать впускной тракт переменной длинны и управлять им в зависимости от оборотов и нагрузки.

a51a84s 960

7651a84s 960

f651a84s 960

6951a84s 960

e951a84s 960

1. Сервомотор управления барабаном.
2. Топливная рампа
3. Сервомотор управления и датчик дроссельной заслонки
4. Дроссель
5. Барабан для изменения длинны коллектора
6. Корпус впускного коллектора.

CVCP (Continuous Variable Camshaft Phasing) — Регулирование фаз газораспределения

С появлением мотора Z18XER, автомобили Opel получили наконец двигатель с системой управления фазами газораспределения. Сложно назвать причины по которым образовался такой временной разрыв с применением этой системы. У конкурентов, например Toyota, моторы с управлением фаз, появились гораздо раньше. Я предполагаю, что основным сдерживающим фактором была стоимость серийной реализации.

Что такое фазы и зачем их крутить.
Фаза (от греч. phasis — появление) — период, ступень в развитии какого-либо явления. Понятно что для того что бы мотор работал, необходимо сперва наполнить цилиндр топливно-воздушной смесью, поджечь ее в нужный момент и выпустить сгоревшие газы из цилиндра. Конечно эти процессы происходят не мгновенно, а в течении промежутков времени то есть в некоторый период времени. Такие периоды будем называть фазами. Нас особенно интересуют сейчас фазы впуска топлива и выпуска сгоревших газов. Эти фазы синхронизированы с положением коленвала. Собственно коленвал через цепь или ремень ГРМ и вращает распредвалы и открывает и закрывает клапана. Поэтому принято рисовать диаграмму фаз в виде секторов, привязанных к углу поворота коленвала.

5b51a84s 960

Впускной клапан у быстроходных двигателей открывается до прихода поршня в положение ВМТ. Закрытие впускного клапана начинается после того, как поршень пройдет НМТ. Поток топливовоздушной смеси имеет некоторую инерцию и она используется для лучшего наполнения цилиндра.

Выпускной клапан открывается всегда до прихода поршня в НМТ, т. е. до окончания такта расширения, чтобы ослабилось противодавление газов при последующем движении поршня вверх. Закрытие выпускного клапана происходит после прихода поршня в ВМТ для обеспечения лучшей очистки цилиндра от газов.

Перекрытием клапанов называется время (угол КВ), в течение которого одновременно открыты впускной и выпускной клапаны.

Большое значение для правильного наполнения цилиндров имеет учет газодинамических характеристик топливовоздушной смеси и выхлопных газов. Во взаимодействии с конфигурацией впуского и вывускного трактов, они образуют сложные колебательные системы. В которых присутствуют резонансы или наоборот зоны без колебаний. Используя колебательные процессы газов можно добиться лучшего наполнения цилиндров или качественно изменить соотношение состава топливной смеси и выхлопных газов в цилиндрах. Инструментом изменения параметров служит механизм управления фазами клапанов и регулируемая дроссельная заслонка.

Например при режиме запуска и работе на холостом ходу, предпочтительно иметь узкие фазы и их минимальное перекрытие. Это позволяет уменьшить обратный заброс газов во впускной коллектор.
При режиме максимальной нагрузки, наоборот широкие фазы с сочетании с минимальным перекрытием будут способствовать лучшему наполнению цилиндров, наилучшим образом используя инерцию газового потока и его колебания.

В режиме частичных нагрузок увеличенное перекрытие клапанов приводит к тому что часть выхлопных газов под воздействием разряжения во впускном коллекторе всасывается обратно из выпускного коллектора в цилиндры. Вспомните, ранее эту функцию выполнял клапан EGR. Теперь от него можно отказаться, поскольку смешение топливовоздушной смеси с выхлопными газами происходит непосредственно в цилиндрах и пропорции смеси можно регулировать перекрытием клапанов и положением дроссельной заслонки, которая отвечает за величину разряжения во впускном коллекторе.

Таким образом система непрерывного управления фазами играет ключевую роль в задании режимов работы двигателя.

Как работает CVCP.
Как любая система управления CVCP имеет в своем составе набор датчиков (датчики положения валов, датчик положения дроссельной заслонки), блок принятия решений (блок управления двигателем) и исполнительные механизмы (регуляторы распредвалов и управляемая дроссельная заслонка).

c751a84s 960

1. Гидравлический управляющий клапан с электромагнитным приводом — впускной распредвал
2. Гидравлический управляющий клапан с электромагнитным приводом — выпускной распредвал
3. Датчик положения впускного распределительного вала
4. Датчик положения выпускного распределительного вала
5. Датчик положения коленчатого вала
6. Контроллер системы управления двигателем
7. Корпус дроссельной заслонки

Основным исполнительным элементом являются регуляторы распредвалов. Рассмотрим их подробнее. Конструктивно механизм выполнен в шкиве распредвала. Центральная часть шкива жестко соединена с распредвалом, а зубчатый шкив имеет некоторую степень свободы. Степень его перемещения относительно центральной части и соответственно распредвала, ограничивается камерой, которая разделена лепестком. Подавая масло в одну часть камеры и сливая его из другой, можно менять положение зубчатого шкива относительно респредвала и таким образом изменять фазы открытия и закрытия клапанов.

af51a84s 960

Для управления потоками масла служит трехпозиционный электромагнитный клапан.
Режимы:
Слив из камеры А, нагнетание в камеру B — прямой сдвиг фазы
Слив из камеры B, нагнетание в камеру A — обратный сдвиг фазы
Запирание масла в камерах — фиксация фазы

Далее приведем цитату из TIS, касающуюся системы подачи масла.

В систему регулирования распределительных валов входит гидравлический регулятор, соединенный с передним концом соответствующего распредвала, закрепленный на головке цилиндров управляющий клапан, маслопровод между клапанами системы регулирования распределительных валов и собственно регуляторами (каналами в распределительных валах), а также электронный контур регулирования.

Решающее значение для нормального функционирования системы регулирования распределительных валов имеет непрерывная подача масла из масляного контура двигателя.

Моторное масло подается по собственному масляному каналу непосредственно от масляного насоса на опорный мостик распределительных валов (3). В опорных мостиках распределительных валов находится по одному электромагнитному клапану для каждого регулируемого распредвала, который направляет поток масла в соответствующие каналы (2) и (6) каждого регулятора распределительного вала, чтобы заполнить камеры «А» или «В» соответствующего регулятора, опорожнить их, или же герметично перекрыть все соединения, благодаря чему поддерживается текущее заданное положение распределительного вала.

Поток масла в соответствующую камеру «В» регулятора распределительного вала протекает по буртику (6) крепежного винта (9). Поток масла в соответствующую камеру «А» регулятора распределительного вала протекает по отдельным, децентрализованно расположенным по оси отверстиям (2). Посредством наполнения или, соответственно, опорожнения масляных камер регулятора распределительного вала на стороне впуска или выпуска изменяется положение диаграммы перемещения клапанов.

80d1a84s 960

1. Крепежный винт крышки регулятора распределительного вала
2. Масляный канал камеры «А» регулятора распределительного вала
3. Опорный мостик распределительного вала
4. Кулачок
5. Распределительный вал
6. Масляный канал камеры «В» регулятора распределительного вала
7. Зубчатое колесо зубчатого ремня
8. Разделительный элемент между камерами «А» и «В»
9. Крепежный винт регулятора распределительного вала
10. Ротор
11. Крышка регулятора распределительного вала
12.Статор

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто