Дополнительные полюса их устройство количество и назначение в электрических машинах постоянного тока

ДОПОЛНИТЕЛЬНЫЕ ПОЛЮСА

dark fb.4725bc4eebdb65ca23e89e212ea8a0ea dark vk.71a586ff1b2903f7f61b0a284beb079f dark twitter.51e15b08a51bdf794f88684782916cc0 dark odnoklas.810a90026299a2be30475bf15c20af5b

caret left.c509a6ae019403bf80f96bff00cd87cd

caret right.6696d877b5de329b9afe170140b9f935

Дополнительные полюса предназначены для создания дополнительного магнитного потока ЭМ, который позволяет уменьшить вредное воздействие реакции якоря, и повысить качество коммутации тягового двигателя.

image172

Дополнительные полюса устанавливают внутри остова между главными полюсами. Их крепят к остову болтами. Между сердечниками дополнительных полюсов и остовом устанавливают диамагнитную прокладку. Сердечник имеет опорный угольник для удерживания катушки.

ЯКОРЬ

Якорь служит для создания вращающего момента двигателя и тормозного момента генератора.

image174

1 – вал переменного сечения;

3 – шихтованный сердечник якоря;

4 – в пазы сердечника вложена обмотка якоря;

7 – подшипники якоря.

Сердечник якоря является частью магнитной цепи тягового двигателя.

image176Собирают его из листов электротехнической стали толщиной 0,5 мм.

Для уменьшения потерь от вихревых токов листы изолируют один от другого тонким слоем лака. Листы собирают в общий пакет, который насаживают на вал якоря на шпонке. В каждом листе имеются отверстия, которые в сердечнике образуют вентиляционные каналы. По периметру якорные листы имеют зубчатую форму, которые при сборке образуются пазы, в которые укладываются секции обмотки якоря.

image178

Обмотка якоря состоит из отдельных катушек (секций), которые укладываются двумя ярусами в пазах сердечника. Одна сторона каждой секции располагается в нижнем слое одного паза, а другая в верхнем слое другого паза.

Каждая секция состоит из пяти проводников. В секции каждый проводник изолирован друг от друга. Секции имеют общую корпусную изоляцию и дополнительную в лобовой и активной части.

Начало и концы всех проводников секций привариваются к своим коллекторным пластинам в два яруса.

image180В тяговых двигателях ДК-108 применяется волновая обмотка якоря, а в тяговых двигателях ДК-117 применяется петлевая обмотка якоря.

Обмотка якоря крепится деревянными или текстолитовыми клиньями в пазах сердечника якоря и фиксируется металлическими бандажами или стеклобандажами в зоне нажимных шайб.

В тяговых двигателях ДК-117 обмотка якоря дополнительно фиксируется стеклобандажами в зоне сердечника якоря.

image182

Коллектор.

Коллекторпредназначен для подвода тока к проводникам обмотки якоря, одновременно в генераторах постоянного тока это механический выпрямитель. (Подробнее смотри 3 раздел электронного курса «Основы электротехники для локомотивных бригад метрополитена»).

Коллектор состоит из:

image1841 – набора медных клинообразного сечения и миканитовых коллекторных пластин;

2 – коллекторного конуса;

3 – коллекторной шайбы;

4 – коллекторной гайки;

5 – изоляционных манжет и цилиндра.

image186

Медные коллекторные пластины изолированы одна от другой миканитовыми пластинами. Нижняя часть пластин имеет форму «ласточкина хвоста», при помощи которого набор пластин зажимают между конусом и шайбой коллектора. Фиксируется набор пластин коллекторной гайкой, которую устанавливают на резьбовую часть коллекторного конуса. Медные коллекторные пластины изолируются от корпуса коллектора миконитовыми манжетами и цилиндром.

В собранном виде коллектор напрессовывается на вал якоря с шпонкой. К каждой коллекторной пластине привариваются проводники обмотки якоря в два яруса.

Нормальная рабочая поверхность коллектора должна быть гладкой. Равномерное потемнение коллектора в процессе эксплуатации без следов подгара свидетельствует о наличии устойчивого слоя политуры и хорошей коммутации.

Вентилятор.

Вентилятор это два алюминиевых диска с прямыми лопастями по периметру и стальной втулкой в центре. Стальная втулка вентилятора устанавливается на вал якоря. Двухдисковый вентилятор изготовлен из алюминиевого сплава.

image187

Засасываемый воздух с окон подшипникового щита со стороны коллектора распределяется на два параллельных потока. Один из потоков омывает поверхность между якорем и полюсами, а также проходит через пазы сердечников главных полюсов. Другой проходит под коллектором и по вентиляционным каналам внутри сердечника якоря. Нагретый воздух выбрасывается через специальные окна в остове со стороны противоположной коллектору независимо от направления вращения тягового двигателя.

640 1

Охлаждение оказывает большое влияние на работу двигателей. Мощность, которую можно получить от электрической машины, ограничена предельной температурой, которую может выдержать изоляция обмоток. Поэтому, при охлаждении значительно снижается нагрев обмоток, что позволяет повысить мощность двигателя.

Источник

Назначение дополнительных полюсов. Реакция якоря.

image0351. Якорь, находящийся под напряжением, создаёт своё магнитное поле image0372. Главные полюса также создают своё магнитное поле, равномерно распределённое по якорю. image0393. В результате взаимодействия двух полей магнитное поле главных полюсов искажается, т.е., физическая нейтраль двигателя немного наклоняется против направления вращения якоря.

Таким образом, магнитное поле со стороны набегающего края полюса (в моторном режиме) становится более насыщенным. Это значит, что и противо-ЭДС, наведённая в соответствующей секции якоря будет больше, чем в секции над сбегающим краем. Образовавшаяся разность потенциалов между ламелями (коллекторными пластинами) приведёт к повышенному искрению на коллекторе, что может привести к образованию кругового огня, однако, дополнительные полюса «выравнивают» искривлённый магнитный поток, предотвращая это явление. Дополнительные полюса предназначены для компенсации реакции якоря, путём выравнивания манитного потока главных полюсов.

Самоиндукция.

· Если разомкнуть цепь, содержащую катушку с большой индуктивностью, то при размыкании контактов будет образовываться электрическая дуга, способная привести к разрушению коммутационного аппарата, поэтому в подобных случаях необходимо применять устройство дугогашения или (для низковольтных цепей) подключать параллельно контактам конденсатор.

Вихревые токи.

При колебаниях напряжения в контактной сети изменяется магнитный поток в катушках подключённых электроаппаратов. Но изменяющийся магнитный поток способен индуктировать ЭДС самоиндукции не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти, так называемые вихревые токи, распространяются по массивному проводнику и накоротко замыкаются в нем, вызывая перегрев и разрушение изоляции, что может привести к выходу аппарата из строя.

image040Сердечники катушек, якорей электродвигателей, трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это крайне нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники якорей и обмоток возбуждения электродвигателей делают не цельнолитыми, а состоящими из тонких пластин, изолированных друг от друга бумагой или слоем изоляционного лака. Благодаря этому преграждается путь для распространения вихревых токов по телу проводника. Вихревые токи также способны вызвать электрическую коррозию, то есть, разрушение структуры металла, а также размагничивают обмотки двигателя, ухудшая его тяговые характеристики

Источник

136. Реакция якоря. Коммутация. Дополнительные полюса

При работе генератора вхолостую, в зависимости от типа генератора, ток якоря очень мал или равен нулю. В этом случае магнитное поле, создаваемое обмоткой полюсов (обмоткой возбуждения) для двухполюсного генератора, имеет вид, представленный на фиг. 277, а. Как было указано выше, линия, проведенная через середину полюсных наконечников, называется осью полюсов. Ось магнитного поля совпадает с осью полюсов.

Линия, перпендикулярная оси магнитного поля, — физическая нейтраль — в данном случае совпадает с геометрической нейтралью (линией а—б).

При работе генератора на внешнюю сеть по обмотке якоря машины будет протекать ток, создающий свое магнитное поле — поле якоря (фиг. 277, б). Наложение двух магнитных полей — поля полюсов и поля якоря — приводит к образованию результирующего магнитного поля. На фиг. 277, в показана картина результирующего магнитного поля генератора. Действие магнитного поля якоря на поле полюсов называется реакцией якоря. Поле якоря, действуя на магнитное поле полюсов, приводит:

12gl clip image002 0025

1. К размагничиванию избегающего края полюса, где направления магнитных линий полей полюса и якоря противоположны, и к подмагничиванию сбегающего края полюса, где магнитные линии полей полюса и якоря направлены в одну сторону. При небольшой величине магнитной индукции в сердечнике полюса размагничивание одной половины полюса происходит настолько же, насколько подмагничивается другая половина.При большой величине индукции вследствие магнитного насыщения ослабление магнитного потока у одной половины полюса не компенсируется усилением его у другой половины, в результате чего магнитный поток генератора уменьшается и напряжение машины падает.

2. К искажению поля машины и смещению физической нейтрали в сторону вращения генератора (положение 12gl clip image002 0027на фиг. 277, в). Величина угла смещения физической нейтрали зависит от величины магнитного поля якоря, которая, в свою очередь, зависит от тока в обмотке якоря, т. е. от нагрузки генератора.

12gl clip image002 0026

3. К необходимости сдвига щеток в сторону вращения якоря во избежание сильного искрообразования. Для того чтобы при непрерывном изменении нагрузки генератора не передвигать все время щетки, применяют специальные дополнительные полюсы, действие которых будет нами разобрано ниже.

При вращении якоря генератора проводники обмотки переходят из одной параллельной ветви в другую. Это происходит в тот момент, когда секции обмотки, минуя один полюс, пересекают физическую нейтраль и входят в зону действия соседнего разноименного полюса. Направление индуктированной в секции э. д. с. меняется на обратное. Процесс переключения секций обмотки из одной параллельной цепи в другую и связанные с ним явления называются коммутацией. В течение некоторого времени (периода коммутации) в коммутируемой секции, проходящей зону коммутации, ток меняет свое направление на обратное. Как известно, каждое изменение тока

в проводнике вызывает изменение магнитного поля, что приводит к возникновению в проводнике э. д. с. самоиндукции. По правилу Ленца э. д. с. самоиндукции стремится задержать изменение тока в секции обмотки, вследствие чего процесс коммутации затягивается.

Величина э. д. с. самоиндукции зависит от индуктивности коммутируемой секции и скорости изменения тока в ней.

Так как процесс коммутации очень сложен, то, не имея возможности здесь подробнее объяснить это явление, мы попытаемся представить его в упрощенном виде. На фиг. 278, а показана секция обмотки абв, находящаяся в зоне коммутации. Ток из двух соседних параллельных ветвей притекает к коллекторной пластине 1 и через положительную щетку уходит во внешнюю

сеть. Для простоты возьмем ширину щетки, равную ширине коллекторной пластины. В положении, показанном на фиг. 278, б секция абв переместилась в сторону и щетка стала касаться коллекторной пластины 2. Сравнивая оба положения секции, замечаем, что направление тока в проводниках изменилось. Если раньше ток протекал от в к а, то во втором случае он протекает от а к в. Изменение тока в проводниках произошло за время, в течение которого щетка перешла с одной коллекторной пластины на другую.

На фиг. 278, в показано промежуточное положение коммутируемой секции при переходе щетки с коллекторной пластины 1 на пластину 2.

В то время, когда щетка в равной мере перекрывала коллекторные пластины 1 и 2, секция обмотки абв находилась на физической нейтрали. Если бы процесс коммутации не сопровождали сложные побочные явления, то в секции обмотки ток был бы равен нулю. В этом случае в соединительных проводниках а и в протекали бы токи, обратно пропорциональные переходным сопротивлениям между щеткой и коллекторными пластинами, или, иначе говоря, прямо пропорциональные площадям соприкосновения щетки с коллекторными пластинами. В положении, когда одна половина щетки касалась пластины 1, а другая — пластины 2, через соединительные проводники аив проходили одинаковые токи, в сумме равные току, уходящему от положительной щетки в сеть. По мере того как щетка будет сходить с пластины 1 и находить на пластину 2, площадь соприкосновения щетки с пластиной 1 станет уменьшаться, а с пластиной 2 — увеличиваться. Это вызовет соответственно уменьшение тока в проводнике а и увеличение тока в проводнике в. Ток в секции обмотки будет увеличиваться. В действительности процесс коммутации усложняется появлением в секции обмотки э. д. с. самоиндукции, которая по правилу Ленца создает ток, направленный в данном случае против тока в проводниках секции. На фиг. 278, б направление тока, порождаемого э. д. с. самоиндукции, показано пунктирными стрелками. Из чертежа видно, что В соединительном проводнике а токи имеют одно направление, в проводнике в — разное направление. Это приводит к увеличению плотности тока под сбегающим краем щетки и уменьшению плотности тока под набегающим краем щетки. Увеличение плотности тока в щетке приводит к перегреву ее и образованию искр на коллекторе, которые могут вызвать порчу коллектора.

Искрение щеток могут вызвать и другие причины, как, например: плохое состояние поверхности коллектора, загрязнение коллектора и щеток, вибрация машины, большая разность потенциалов между соседними пластинами коллектора, перегрузка генератора.

Секция обмотки, приближаясь к зоне коммутации, имеет направление тока, соответствующее направлению иидуктированной э. д. с. той параллельной ветви, откуда секция выходит. Для хорошей коммутации необходимо, чтобы в секции, попавшей на физическую нейтраль и замкнутой щеткой накоротко, ток был бы равен нулю. Но возникающая в секции э. д. с. самоиндукции, направленная по правилу Ленца в ту же сторону, что и э. д. с. в проводниках, будет мешать изменению тока, стараясь сохранить прежнюю величину и направление тока. Отсюда становится понятным стремление прекратить действие э. д. с. самоиндукции. Для этой цели щетки генератора сдвигают с физической нейтрали на некоторый угол в сторону вращения якоря. В коммутируемом элементе, попавшем в магнитное поле другой полярности, будет индуктироваться э. д. с, имеющая направление, обратное э. д. с самоиндукции. Так как величина э. д. с. самоиндукции зависит от величины тока в проводниках обмотки, или, иначе говоря, от нагрузки генератора, то при различной нагрузке в коммутируемой секции будет возникать различная по величине э. д. с. самоиндукции.

12gl clip image002 0028

Чтобы обеспечить постоянное компенсирование э. д. с. само индукции, пришлось бы непрерывно менять положение щеток, что практически невыполнимо. Поэтому современные конструкции машин постоянного тока имеют дополнительные полюсы, располагаемые между главными полюсами. Щетки в этом случае устанавливаются на геометрической нейтрали. Магнитное поле, создаваемое дополнительными полюсами, индуктирует в проводниках, проходящих зону коммутации, э. д. с, направленную против э. д. с. самоиндукции, тем самым обеспечивая хорошую коммутацию и устраняя искрение щеток.

Чтобы компенсировать изменяющуюся с нагрузкой э. д. с. самоиндукции, необходимо, чтобы магнитное поле дополнительных полюсов изменялось пропорционально нагрузке генератора. Для этой цели обмотка дополнительных полюсов включается последовательно с обмоткой якоря.

На фиг. 279 показано расположение и включение обмотки дополнительных полюсов. Из чертежа видно, что у генератора за главным полюсом в сторону вращения якоря располагается разноименный дополнительный полюс. Магнитное поле дополнительных полюсов имеет направление, противоположное полю самого якоря, и уравновешивает его.

12gl clip image002 0029

Для генераторов, работающих с резко изменяющейся нагрузкой (подъемники, краны, прокатные станы), применяют иногда компенсационную обмотку, закладываемую в пазы, специально сделанные в полюсных наконечниках. Направление тока компенсационной обмотки должно быть противоположно току в проводниках обмотки якоря. На дуге, охватываемой полюсным наконечником, магнитное поле компенсационной обмотки будет уравновешивать поле реакции якоря, не допуская искажения поля машины. Компенсационная обмотка, так же как обмотка дополнительных полюсов, включается последовательно с обмоткой якоря. На фиг. 280 показана схема компенсационной обмотки.

Источник

Устройство электродвигателя постоянного тока

Обмотки возбуждения с большим числом витков тонкого провода и значительным сопротивлением имеют выводы к зажимам с обозначениями Ш1 и Ш2, а обмотки возбуждения с малым числом витков толстого провода и малым сопротивлением — выводы к зажимам с обозначениями С1 и С2.

В электродвигателях постоянного тока, предназначенных для тяжелого режима работы, полюсные наконечники имеют пазы, параллельные оси вала, где находится компенсационная обмотка с небольшим числом витков толстого провода и малым сопротивлением с выводами к зажимам с обозначениями К1 и К2.

1265532388 22

Учебная модель электродвигателя постоянного тока

Обмотки возбуждения, обмотка добавочных полюсов и компенсационная обмотка выполнены изолированным медным проводом. При проводах значительного сечения обмотку добавочных полюсов выполняют неизолированной медной шиной, навитой спиралью на узкое ребро, с прокладкой изоляции как между витками, так и между ними и самим полюсом.

Мощность на возбуждение магнитного поля электродвигателя постоянного тока в зависимости от ее размеров составляет от 0,5 до 5 % ее номинальной мощности.

Между поверхностями полюсных наконечников и магнитопроводом якоря имеется воздушный зазор, радиальный размер которого в зависимости от номинальной мощности электродвигателя и его быстроходности изменяется обычно от нескольких долей миллиметра до десяти миллиметров.

1460558052 dpt

Якорь барабанного типа — зубчатый цилиндр, укрепленный на валу электродвигателя постоянного тока, собранный из пакетов, составленных из тонких изолированных друг от друга лаком листов электротехнической стали с пазами на наружной поверхности. Между пакетами находятся радиальные вентиляционные каналы, а пазы якоря заполнены изолированными медными проводниками, которые по торцам соединены между собой в секции, входящие в обмотку якоря.

Секция — основной элемент обмотки якоря из одного или нескольких последовательно соединенных витков, начало и конец которых припаяны к двум коллекторным пластинам, в результате чего конец одной секции и начало следующей присоединены к одной и той же коллекторной пластине.

1265531739 a2

1265531751 a3

Коллектор — полый цилиндр из мелких пластин твердотянутой меди трапецеидального сечения, изолированных миканитовыми прокладками и манжетами друг от друга и от вала.

Группы щеток, укрепленных в щеткодержателях, устанавливают равномерно по окружности коллектора перед серединой главных полюсов с тем, чтобы они присоединялись к тем секциям обмотки якоря, которые в данный момент находятся на геометрических нейтралях якоря — неподвижных линиях, проходящих через центр вала машины по осям добавочных полюсов. Геометрические нейтрали расположены по нормалям к магнитным линиям основного поля машины, а число их равно числу пар главных полюсов.

При расположении щеток на коллекторных пластинах, отвечающих секциям обмотки якоря, находящимся на геометрических нейтралях, и холостом ходе электродвигателя, э. д. с, индуктируемые в движущихся проводниках в пределах каждой параллельной ветви обмотки якоря, направлены согласно, а э. д. с. между щетками различной полярности достигает наибольшего значения. При сдвиге щеток по окружности коллектора в любом направлении эта э. д. с. уменьшается, поскольку в параллельно соединенных ветвях обмотки якоря появляются проводники со встречно направленными э. д. с.

Щеткодержатели укреплены на пальцах поворотной щеточной траверсы, от которой они электрически изолированы. С помощью траверсы возможно смещать щетки в небольших пределах по окружности коллектора относительно полюсов при настройке работы щеточного аппарата. Совокупность коллектора и щеток создает скользящий контакт с вращающейся обмоткой якоря.

Число групп щеток с чередующейся полярностью обычно равно числу главных полюсов электродвигателя постоянного тока. Для образования выводов обмотки якоря Я1 и Я2 щетки одинаковых полярностей, находящихся перед серединой соответствующих одноименных главных полюсов, соединяют между собой и от них выводят проводники большого сечения или шины к зажимам с обозначениями Я1 и Я2, которые используют для присоединения к другим обмоткам машины или ко внешней цепи.

На валу электродвигателя постоянного тока со стороны, противоположной коллектору, укреплен вентилятор центробежного типа, который обеспечивает лучшее охлаждение машины. Вал лежит в подшипниках, расположенных в подшипниковых щитах электродвигателя.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Устройство машины постоянного тока

Электротехническая промышленность выпускает электрические машины постоянного тока большой номенклатуры по мощности и конструктивному исполнению, поэтому, несмотря на некоторые различия в конструкции отдельных сборочных единиц и деталей, их устройство одинаково. Основным типом машины постоянного тока является коллекторная, отличительным признаком которой служит наличие коллектора на валу якоря машины. На статоре машины помимо главных полюсов с обмоткой возбуждения имеются добавочные полюсы.
Электрическая машина постоянного тока (рис. 1) состоит из статора, якоря, коллектора, щеточного аппарата и подшипниковых щитов.

ustrojstvoj mashiny postoyannogo toka
Рис. 1. Устройство электрической машины постоянного тока:
1 — коллектор, 2 — щетки, 3, 9 — сердечник и обмотка якоря, 4 — главный полюс, 5 — катушка обмотки возбуждения, 6 — станина (корпус), 7 — подшипниковый щит, 8 — вентилятор, 10 — вал

Статор состоит из станины 6, главных полюсов 4 и добавочных полюсов (на рисунке не показаны) с соответствующими катушками. Станина служит для крепления полюсов и подшипниковых щитов и является частью магнитной цепи, поскольку через нее замыкается магнитный поток машины. Поэтому станину изготовляют из стали — материала, обладающего достаточной механической прочностью и большой магнитной проницаемостью. По окружности станины расположены отверстия для крепления полюсов.

ustrojstvoj mashiny postoyannogo toka2
a)
ustrojstvoj mashiny postoyannogo toka21
б)

Главные полюса (рис. 2) выполняют шихтованными из стальных штампованных листов стали толщиной 1 или 2 мм, а добавочные — массивными или также шихтованными. Стальные листы сердечника 2 полюсов спрессованы и скреплены заклепками 4, головки которых утоплены в нажимные щеки 5, установленные на торцах каждого полюса. Шихтованными могут изготовляться только наконечники главных полюсов, так как при вращении зубчатого якоря из-за пульсации магнитного потока в воздушном зазоре в них возникают вихревые токи и происходят потери мощности. Однако, исходя из технологического удобства изготовления полюсов, их обычно делают шихтованными.
Полюсы крепят к станине болтами: нарезку резьбы для болтов выполняют непосредственно в шихтованном сердечнике 2 полюса (рис. 2, а) либо в массивных стальных стержнях 6 (рис. 2, б), вставленных в выштампованные отверстия в полюсах.
Магнитное поле в машине создается намагничивающей силой обмотки возбуждения, выполняемой в виде полюсных катушек, надетых на сердечники главных полюсов. Для уменьшения искрения под щетками и предупреждения таким образом подгара пластин коллектора и образования на его поверхности «кругового огня» машина снабжена добавочными полюсами с катушками, установленными на их сердечниках. Добавочные полюсы размещают между главными полюсами и крепят к станине болтами.
Обмотки главных и добавочных полюсов (рис. 3, а, б) изготовляют из изолированного медного провода круглого или прямоугольного сечения.

ustrojstvoj mashiny postoyannogo toka3
Рис. 3. Обмотки полюсов: а — главного, б — добавочного;
1— катушка обмотки, 2, 4 — сердечники главного и добавочного полюсов, 3 — опорный угольник, 5 — обмотка добавочного
полюса

Обмотки добавочных полюсов включают последовательно с обмоткой якоря, поэтому сечение их проводов рассчитано на рабочий ток машины.
В некоторых мощных машинах постоянного тока обмотку полюса выполняют из нескольких секций с установкой между ними дистанционных шайб из изолированных материалов, образующих вентиляционные каналы.
Якорь машины постоянного тока состоит из вала, сердечника, обмотки и коллектора. Сердечник якоря собран из штампованных листов электротехнической стали (рис. 4) с выштампованными в них вырезами определенной формы, образующими в собранном сердечнике пазы для укладки в них обмотки якоря. Листы сердечника обычно изолированы с двух сторон тонкой пленкой лака, но могут быть и оксидированы. Собранные в общий пакет листы образуют сердечник, насаженный на вал якоря и закрепленный на нем нажимными шайбами. Такая конструкция позволяет уменьшить потери энергии в сердечнике от действия вихревых токов, возникающих в результате его перемагничивания при вращении якоря в магнитном поле. Для лучшего охлаждения машины в сердечниках якоря обычно имеются вентиляционные каналы для охлаждающего воздуха.
Сердечник, в пазы которого уложена секция обмотки якоря, показан на рис. 5.

ustrojstvoj mashiny postoyannogo toka51
Рис. 4. Стальной лист сердечника якоря:
1 — зубец, 2 — изоляция, 3 — паз
ustrojstvoj mashiny postoyannogo toka52
Рис. 5. Расположение секции обмотки
якоря в пазах сердечника

Обмотка якоря выполняется из медных проводов круглого или прямоугольного сечения и состоит из заранее заготовленных секций, концы которых припаивают к петушкам пластин коллектора. Обмотку делают двухслойной: размещают в каждом пазу две стороны различных якорных катушек — одну поверх другой. Для прочного закрепления проводов обмотки якоря в пазах используют деревянные, гетинаксовые или текстолитовые клинья. Деревянные клинья, широко применявшиеся в электродвигателях старых конструкций, не обеспечивают надежного крепления обмотки в пазах сердечника, поскольку при высыхании настолько уменьшаются в объеме, что могут выпасть из паза. В некоторых конструкциях машин пазы не расклинивают, а обмотку крепят бандажом.
Бандаж выполняют из немагнитной стальной проволоки, наматываемой с предварительным натяжением. Лобовые части обмотки якоря крепят к обмоткодержателю также с помощью бандажа. В современных машинах для бандажирования якорей используют стеклоленту.
Коллектор машины постоянного тока собран из клинообразных пластин холоднокатаной меди, изолированных друг от друга прокладками из коллекторного миканита. Нижние (узкие) края пластин имеют вырезы в форме «ласточкина хвоста», служащие для закрепления медных пластин и миканитовой изоляции.

ustrojstvoj mashiny postoyannogo toka6
Рис. 6. Коллекторы электрических машин постоянного тока:
а — на пластмассе, б — с нажимными конусами;
1,6 — пластины коллектора, 2 — пластмасса, 3 — втулка, 4, 7 — нажимные конусы, 5 — изоляционная манжета, 8 — стяжной винт

По способу закрепления комплекта медных и миканитовых пластин различают коллекторы на пластмассе (рис. 6, а) и со стальными нажимными конусами и втулкой (рис. 6, б). Коллекторы крепят нажимными конусами двумя способами: при одном из них усилие от зажима передается только на внутреннюю поверхность «ласточкина хвоста», а при другом — на «ласточкин хвост» и конец пластины, при этом пластины закрепляют враспор.
Коллекторы с первым способом крепления называют арочными, а вторым способом — клиновыми. Чаще всего применяют арочные коллекторы, поскольку при ослаблении давления между их пластинами из-за усадки межпластинной миканитовой изоляции эти коллекторы можно подпрессовывать, восстанавливая таким образом необходимое сжатие пластин и прочность коллекторов.
Щеточный аппарат (рис. 7) состоит из траверсы, щеточных пальцев и щеткодержателей.

ustrojstvoj mashiny postoyannogo toka8
Рис. 7. Щеточный аппарат электрической машины постоянного
тока:
а— траверса, б, в — радиальные щеткодержатели, г — реактивный щеткодержатель;
1—пальцы (бракеты), 2 — рычаг, 3, 8, 15 — пружины, 4 — корпус, 5, 11 — щетки, 6 — обойма, 7 — фарфоровый наконечник, 9 — хомутик, 10 — штифт, 12 — стенка обоймы, 13 — храповик,
14 — колечко пружины

Траверса (рис. 7, а) служит для крепления на ее щеточных пальцах щеткодержателей
(рис. 7, б, в, г), создающих необходимую электрическую цепь. Щеткодержатель состоит из обоймы и нажимного устройства, обеспечивающего прилегание щетки к коллектору с необходимым усилием. Давление (0,02— 0,04 МПа) на щетку должно быть отрегулировано так, чтобы был плотный и надежный контакт между щеткой и коллектором.
В машинах постоянного тока применяют щеткодержатели двух типов: радиальные, у которых ось щетки совпадает с продолжением радиуса коллектора (рис. 7, б, в), и реактивные, у которых ось щетки расположена под углом к продолжению радиуса коллектора в сторону его вращения (рис. 7, г).
ustrojstvoj mashiny postoyannogo toka9Щетка (рис. 8) представляет собой прямоугольный брусок из композиций, выполненных на основе графита. Она снабжена гибким медным канатиком 1, один конец которого заармирован в щетку, а другой, свободный, снабжен наконечником 2 для присоединения к щеточному аппарату. Все щеткодержатели одной полярности соединены между собой сборными шинами, подключенными к выводам машины.
Применяемые в машинах постоянного тока щетки имеют маркировку, характеризующую их состав и физические свойства. Щетки, используемые в машинах общепромышленного назначения, подразделяют на три основные группы: графитные, угольно-графитные и медно-графитные. В целях нормальной работы и продления срока службы коллектора следует применять для каждой машины щетки только той марки, которая определена заводом-изготовителем с учетом мощности, конструкции, условий работы и электрической характеристики машины.
Подшипниковые щиты электрических машин служат в качестве соединительных деталей между станиной и якорем, а также опорной конструкцией для якоря, вал которого вращается в подшипниках, установленных в щитах.
В электрических машинах постоянного тока применяют, различные подшипниковые щиты, отличающиеся друг от друга формой, размером и материалом, из которого они изготовлены. Однако, несмотря на большое разнообразие конструкций подшипников, щиты можно разделить по назначению на два основных вида: обычные и фланцевые для установки и крепления непосредственно на исполнительном механизме.
В ряде случаев электрические машины постоянного тока могут иметь комбинированную систему крепления, т. е. станину с лапами для установки и крепления на опорной конструкции и одновременно фланцевый подшипниковый ; щит для крепления па исполнительном механизме.
Подшипниковые щиты электрических машин постоянного тока изготовляют методом литья (преимущественно из стали, реже из чугуна и сплавов алюминия), а также сварки или штамповки. В центре щита имеется расточка под подшипник, в которой устанавливают шариковый или роликовый подшипник качения. В мощных машинах постоянного тока в ряде случаев используют подшипники скольжения.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто