Для чего служит глушитель в автомобиле

Виды, устройство и принцип работы глушителя автомобиля

Глушитель автомобиля предназначен для снижения уровня шума выхлопных газов в системе выпуска до соответствия с международными стандартами. Он представляет собой металлический корпус, внутри которого выполнены перегородки и камеры, образующие каналы со сложными маршрутами. Когда через последние проходят отработавшие газы, происходит поглощение звуковых колебаний различной частоты и преобразование их в тепловую энергию.

Функции глушителя в системе выпуска

В системе выпуска отработавших газов двигателя глушитель устанавливается после катализатора (для автомобиля, работающего на бензине) или сажевого фильтра (для дизельных моторов). В большинстве случаев их предусматривается два:

На практике устройство глушителя автомобиля обеспечивает следующие приводящие к снижению шума преобразования выхлопа:

Особенности работы и виды глушителей

В современных автомобилях используются два вида глушителей: резонансные и прямоточные. Оба могут устанавливаться в комплексе с резонатором (предварительным глушителем). В некоторых случаях прямоточная конструкция может заменять передний глушитель.

Устройство резонатора

Конструктивно резонатор глушителя, который также называют пламегасителем, представляет собой перфорированную трубу, находящуюся в герметичном корпусе, разделенном на несколько камер. Он состоит из следующих элементов:

Конструкция резонансного глушителя

В отличие от предварительного, главный резонансный глушитель устроен сложнее. Он состоит из нескольких перфорированных труб, установленных в общем корпусе, которые разделены перегородками и находятся на разных осях (см. рис. Глушитель в разрезе):

Таким образом, резонансный глушитель использует все виды преобразования звуковых волн различных частот.

Особенности прямоточного глушителя

Основным недостатком резонансного глушителя является эффект создания противодавления, который возникает в результате перенаправления потока отработавших газов (при его столкновении с перегородками). В связи с этим многие автомобилисты выполняют тюнинг системы выхлопа, устанавливая прямоточный глушитель.

Конструктивно прямоточный глушитель состоит из следующих элементов:

На практике глушитель-прямоток имеет следующий принцип работы: через все камеры проходит одна перфорированная труба. Таким образом, гашение шума путем изменения направления и сечения потока газов отсутствует, а подавление шумов реализуется исключительно благодаря интерференции и поглощению.

За счет беспрепятственного прохождения выхлопа через прямоточный глушитель возникающее противодавление очень мало. Однако на практике большого прироста мощности это не обеспечивает (от 3% до 7%). С другой стороны, у автомобиля появляется характерное для спортивных автомобилей звучание, поскольку присутствующие в нем шумопоглощающие технологии устраняют только высокие частоты.

От того, как работает глушитель, зависит комфорт водителя, пассажиров и пешеходов. Так при длительной эксплуатации повышенный шум может причинять серьезные неудобства. На сегодняшний день установка в конструкции прямоточного глушителя для автомобиля, перемещающегося в городской черте, является административным нарушением, которое грозит штрафами и предписанием о демонтаже устройства. Связано это с превышением норм шума, заданных стандартами.

Источник

Глушитель автомобиля. Что там внутри?

wIAAAgDHKeA 100

Глушитель является важным конструктивным элементом выпускной системы, без которого эксплуатация современного автомобиля просто невозможна. Автомобильный глушитель выполняет следующие основные функции:

• снижение уровня шума отработавших газов;

• преобразование энергии отработавших газов, снижение их скорости, температуры, пульсации.

Отработавшие газы, покидающие цилиндры двигателя, имеют высокое давление. При движении отработавших газов по выпускной системе создаются звуковые волны, распространяющиеся быстрее газов. Глушитель преобразует энергию звуковых колебаний в тепловую энергию, чем достигается снижение уровня шума до определенного (заданного) значения. Вместе с тем с применением глушителя в выпускной системе создается противодавление, которое приводит к некоторому снижению мощности двигателя.

В глушителе используется несколько технологий снижения уровня шума:

☑ 1: Устройство глушителя:

5fe3616s 960

1: корпус;
2: теплоизоляция;
3: глухая перегородка;
4: перфорированная труба;
5: дроссель

• расширение (сужение) потока;
• изменение направления потока;
• интерференция звуковых волн;
• поглощение звуковых волн.
• Расширение потока реализовано посредством нескольких камер разного объема, разделенных перегородками.
• Позволяет эффективно гасить низкочастотные звуковые колебания.
• Наряду с расширением в глушителе осуществляется сужение потока с помощью диафрагменного отверстия (дросселя). Используется для гашения высокочастотного шума.

dfe3616s 960

6. передняя перфорированная труба;
7. впускной патрубок;
8. средняя перегородка;
9. выпускной патрубок;
10. передняя перегородка;
11. задняя перфорированная труба;
12. задняя перегородка;
13. корпус

В глушителе, за исключением прямоточных глушителей, предусматривается изменение направления движения потока отработавших газов. Угол поворота потока находится в пределе 90-360°, чем достигается гашение средне- и высокочастотных звуковых колебаний.

Интерференция звуковых волн, в зависимости от характера их наложения, приводит к увеличению (конструктивная интерференция) или уменьшению (деструктивная интерференция) амплитуды колебаний. В глушителе используются оба вида интерференции. Технология реализована с помощью перфорационных отверстий в трубах глушителя. Изменяя размер отверстий и объем окружающей трубу камеры можно добиться гашения звуковых колебаний в широком диапазоне частот.

3013616s 960

1: звукопоглощающий материал;
2: корпус;
3: прямоточный выпускной патрубок;
4: стальня сетка;
5: перфорированная труба;
6: цельносварные стыки

При прохождении звуковых волн через специальный звукопоглощающий материал происходит их поглощение. Данный способ эффективен при гашении высокочастотных звуковых колебаний.

Для достижения наибольшего эффекта данные технологии в глушителях используются, как правило, в комплексе.

В современных автомобилях устанавливается от одного до пяти глушителей, в основном – два. Ближайший к двигателю глушитель называется предварительным (передним) глушителем или резонатором. За ним следует основной (задний) глушитель. Для каждой конкретной модели автомобиля и марки двигателя используется свой набор глушителей.

Резонатор служит для предварительного снижения уровня шума и уравновешивания пульсаций потока отработавших газов. Конструктивно резонатор представляет собой перфорированную трубу, помещенную в металлический корпус. Для повышения эффективности гашения колебаний в трубе выполняется дроссельное отверстие.

Устройство основного глушителя

8213616s 960

Основной глушитель обеспечивает окончательное шумоподавление. Он имеет более сложную конструкцию. В металлическом корпусе размещается несколько перфорированных трубок. Корпус разделен перегородками на 2-4 камеры. Некоторые камеры могут заполняться звукопоглощающим материалом. В основном глушителе поток отработавших газов многократно меняет свое направление – лабиринтный глушитель.

Из всех конструктивных элементов выпускной системы больше всех подвергается модернизации (тюнингу) глушитель. При тюнинге выпускной системы устанавливается т.н. прямоточный глушитель (одна прямоточная труба на все камеры без изменения направления потока). Такой глушитель обладает меньшим противодавлением, но существенной прибавки в мощности двигателя он не дает. Основное преимущество прямоточного глушителя «благородное» или «спортивное» звучание автомобиля (кому, что больше нравиться).

Устройство прямоточного глушителя

8413616s 960

Конструкция прямоточного глушителя объединяет корпус из нержавеющей стали, в котором размещена перфорированная труба, обернутая стальной сеткой и звукопоглощающим материалом. Стальная сетка обеспечивает в основном защиту звукопоглощающего материала от выдува. В качестве звукопоглощающего материала используется стекловолокно. В прямоточном глушителе звуковые волны беспрепятственно проходят через отверстия трубы, металлическую сетку и поглощаются стекловолокном (преобразуются в тепловую энергию).

Источник

Устройство и принцип работы глушителя

Уважаемые друзья! Мы с вами уже познакомились с общим строением автомобиля, а сегодня мы рассмотрим из чего состоит и как работает такой важный узел автомобиля, как глушитель.

Выпускная труба автомобиля или глушитель предназначена для отвода из автомобиля выхлопных газов, которые производятся при сгорании топлива в двигателе, и снижения издаваемого двигателем шума.

Из каких частей состоит глушитель?

ustroistvo glushitelya

Любой стандартный глушитель состоит из коллектора, нейтрализатора, переднего и заднего глушителя. Коротко остановимся на каждой из частей в отдельности.

Коллектор подключен непосредственно к двигателю и выполняет отвод отработанных газов в глушитель. Он подвергается воздействию высоких температур (до 1000̊С). Поэтому изготавливается он из высокопрочного металла: чугуна или высококачественной стали. Коллектор также подвергается сильным вибрациям и должен быть надежно закреплен.

В нейтрализаторе происходит догорание топливной смеси, не сгоревшей в двигателе, а также удержание вредных веществ, содержащихся в выхлопных газах. Для удержания вредных веществ в нейтрализаторе установлены специальные соты
с напылением из платины и палладия. В некоторых марках автомобилей нейтрализатор устанавливается в коллекторе.

В переднем глушителе происходит снижение резонанса отработанных газов. Для этого он оборудован специальной системой решеток и отверстий. Они позволяют уменьшить скорость потока выхлопных газов, снизить их температуру и вибрацию.

Он предназначается для максимального уменьшения производимого автомобилем шума. Он состоит из большого количества воздуховодов, системы перегородок и специального жаропрочного наполнителя. Это позволяет добиться снижения шума, а также температуры и скорости воздушного потока отработанного топлива.

И напоследок несколько советов от бывалых: как выбрать качественный глушитель для своего автомобиля.

Не следует экономить на покупке самого дешевого глушителя. Как известно, скупой всегда платит дважды. Качественный и надежный глушитель прослужит долго и не доставит хлопот при обслуживании.

Источник

Лучшая статья о принципах работы выхлопной системы 1

5d53bu 100

Журнал ТЮНИНГ
Текст Александр Пахомов.

Едва ли не самая популярная тема во всех «курилках», так или иначе связанных с тюнингом автомобилей, — выпускные системы двигателей. По крайней мере, я чаще отвечаю на вопросы о выхлопе, чем о клапанах, головках, коленвалах и прочих составляющих настройки двигателей. Причем диапазон вопросов примерно следующий: от «скажите, а как применить формулу для вычисления резонансной частоты (приводится соотношение для резонатора Гельмгольца) к четырехдроссельному впуску?» до «мне друг подарил «паук» со своего спортивного «гольфа». Сколько прибавится лошадиных сил, если я его установлю на свой автомобиль?» или » я строю себе мотор. Какой глушитель купить, чтобы было больше мощности?», или «сколько лошадиных сил прибавится, если я вместо катализатора установлю резонатор?». Причем во всех вопросах красной линией проходит добавочная мощность.

ТАК ДАВАЙТЕ ДЛЯ НАЧАЛА РАЗБЕРЕМСЯ, ГДЕ ЖЕ ЛЕЖИТ ЭТА ДОБАВОЧНАЯ МОЩНОСТЬ. И ПОЧЕМУ ВЫПУСКНОЙ ТРАКТ ВЛИЯЕТ НА РАБОТУ МОТОРА.

Если мы все дружно понимаем, что мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), то понятно, что мощность — зависимая от скорости величина. Рассмотрим чисто теоретический двигатель (не важно, электрический он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий момент на оборотах от 0 до бесконечности. (кривая 2 на рис. 1) Тогда его мощность будет линейно расти с оборотами от 0 до бесконечности (кривая 1 на рис. 1). Предмет нашего интереса — четырехтактные многоцилиндровые двигатели внутреннего сгорания в силу конструкции и процессов, в них происходящих, имеют рост момента с увеличением оборотов до его максимальной величины, и с дальнейшим увеличением оборотов момент сновападает (кривая 3 на рис. 1). Тогда и мощность будет иметь аналогичный вид (кривая 4 на рис. 1). Важным обстоятельством для понимания функций выпускной системы является связь вращающего момента с коэффициентом наполнения цилиндра.

de5c601s 960

Давайте себе представим процесс, происходящий в цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что вверхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0.8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1.2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис. 1). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя. Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый — сдемпфированное в той или иной степени истечение газов по трубам. Второй — гашение акустических волн с целью уменьшения шума. И третий — распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска. Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна оказывать существенного сопротивления потоку. Если по какой то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов (например, соседи пошутили и засунули в выхлопную трубу картошку), то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики могу сказать, что для двигателя объемом 1600 куб. см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм. Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель — полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом — это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля. Должен сказать, что в большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя — всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку.

ТЕПЕРЬ, НАВЕРНОЕ, СЛЕДУЕТ ПРЕДСТАВИТЬ СЕБЕ, КАКИМ ОБРАЗОМ ЗВУК ГАСИТСЯ В ГЛУШИТЕЛЕ.

Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя состоит в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить начетыре группы. Это ограничители, отражатели, резонаторы и поглотители.

4adc601s 960

Принцип его работы прост. В корпусе глушителя имеется существенное заужение диаметра трубы, некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе — довольно распространенная конструкция.

4edc601s 960

В корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных систем.

9dc601s 960

Глушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два не равных объема, разделенных глухой перегородкой. Каждое отверстие вместе с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных, первых в выпускных системах. Существенного сопротивления потоку не оказывают, т.к. сечение не уменьшают.

fddc601s 960

Способ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотите ли позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум. Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Многие замечали, что некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов. Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться «благородного» звучания мотора. Надо заметить, что если требования к выпускной системе не распространяются дальше изменения «голоса», то за дача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания.

ТЕПЕРЬ МОЖНО ПЕРЕЙТИ К ВОПРОСУ, НАИБОЛЕЕ ПОПУЛЯРНОМУ И БОЛЕЕ СЛОЖНОМУ. КАКИМ ОБРАЗОМ ДВИГАТЕЛЬ БЛАГОДАРЯ НАСТРОЙКЕ ВЫПУСКНОЙ СИСТЕМЫ МОЖЕТ ПОЛУЧИТЬ ДОПОЛНИТЕЛЬНУЮ МОЩНОСТЬ?

Как мы уже уяснили, коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая — когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Помните? Такое состояние (фаза перекрытия) характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт раз режения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет свое го максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре? Такой вот процесс может вполне происходить в выпускной системе ДВС. Осталась сущая мелочь. Нужно такой процесс организовать.

Первым необходимым условием дозарядки цилиндров с помощью ударных волн надо назвать существование достаточно широкой фазы перекрытия. Строго говоря, нас интересует не столько сама ширина фазы как геометрическая величина, сколько интервал времени, когда оба клапана открыты. Без особых разъяснений понятно, что при постоянной фазе с увеличением скорости вращения время уменьшается. Из этого автоматически следует, что при настройке выпускной системы на определенные обороты одним из варьируемых параметров будет ширина фазы перекрытия. Чем выше обороты настройки, тем шире нужна фаза. Из практики можно сказать, что фаза перекрытия менее 70 градусов не позволит иметь заметный эффект, а значение для настроенных на обычные 6000 об/мин систем составляет 80 — 90 градусов.

ed3c601s 960

Второе условие уже определили. Это необходимость вернуть к выпускному клапану ударную волну. Причем в многоцилиндровых двигателях вовсе необязательно возвращать ее в тот цилиндр, который ее сгенерировал. Более того, выгодно возвращать ее, а точнее, использовать в следующем по порядку работы цилиндре. Дело в том, что скорость распространения ударных волн в выпускных трубах — есть скорость звука. Для того чтобы возвратить ударную волну к выпускному клапану того же цилиндра, предположим, на скорости вращения 6000 об/мин, надо расположить отражатель на расстоянии примерно 3,3 метра. Путь, который пройдет ударная волна за время двух оборотов коленчатого вала при этой частоте, составляет 6,6 метра. Это путь до отражателя и обратно. Отражателем может служить, например, резкое многократное увеличение площади трубы. Лучший вариант — срез трубы в атмосферу. Или, наоборот, уменьшение сечения в виде конуса, сопла Лаваля или, совсем грубо, в виде шайбы. Однако мы договорились, что различные элементы, уменьшающие сечение, нам неинтересны. Таким образом, настроенная на 6000 об/мин выпускная система предполагаемой конструкции для, например, четырехцилиндрового двигателя будет выглядеть как четыре трубы, отходящие от выпускных окон каждого цилиндра, желательно прямые, длиной 3,3 метра каждая. У такой конструкции есть целый ряд существенных недостатков. Во-первых, маловероятно, что под кузовом, например, Гольфа длиной 4 метра или даже Ауди А6 длиной 4,8 метра возможно разместить такую систему. Опять же, глушитель все-таки нужен. Тогда мы должны концы четырех труб ввести в банку достаточно большого объема, с близкими к открытой атмосфере акустическими характеристиками. Из этой банки надо вывести газоотводную трубу, которую необходимо оснастить глушителем.

Короче, такого типа система для автомобиля не подходит. Хотя справедливости ради надо сказать, что на двухтактных четырехцилиндровых мотоциклетных моторах для кольцевых гонок она применяется. Для двухтактного мотора, работающего на частоте выше 12 000 об/мин, длина труб сокращается более чем в четыре раза и составляет примерно 0,7 метра, что вполне разумно даже для мотоцикла.

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто