Основная задача амортизатора – гасить вертикальные колебания. Кроме того, нельзя забывать и о влиянии амортизаторов на разгонную и тормозную динамику автомобиля.
В данной статье мы поговорим для чего нужен автомобильный амортизатор и как проверить его на неисправности. Какие бывают амортизаторы и какой лучше выбрать?
Для чего нужен амортизатор авто?
При разгоне автомобиль «приседает» назад, нагружая задние и разгружая передние колеса, снижая тем самым их сцепление с дорогой. При торможении наблюдается обратная картина. Основная нагрузка ложится на передние колеса, а задние лишь слегка притормаживают. И в той и в другой ситуации идеальным было бы состояние, при котором автомобиль сохранял бы свое нормальное «горизонтальное» положение.
Примерно та же картина и при маневрировании, но здесь нагрузка смещается не по осям, а по сторонам автомобиля.
Резюмируя, можно сказать, что главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Для чего колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление.
Современные тенденции сводятся к тому, что, к примеру, пружины или рессоры лишь поддерживают вес автомобиля. Всю остальную работу берут на себя именно амортизаторы, как более точный инструмент. Вот почему так важен их правильный выбор.
Какие бывают амортизаторы?
Наиболее распространены амортизаторы двух видов – гидравлические и газогидравлические (часто их называют газонаполненными или газовыми). В гидравлических амортизаторах гашение колебаний упругих элементов подвески происходит просто за счет перетекания жидкости (обычно это масло) из одного резервуара в другой и обратно через систему клапанов. В газогидравлических также присутствует жидкость, однако она предварительно “поджата” небольшим объемом газа, который, в отличие от жидкости, имеет свойство сжиматься.
У газогидравлических амортизаторов есть “классический” недостаток. При неизбежной тряске воздух вспенивает масло и создает “воздушные ямы” в работе амортизатора. При интенсивной же вибрации возникают воздушные пузырьки низкого давления, что не только снижает эффективность работы амортизатора, но и довольно быстро приводит его в негодность. Срабатывает эффект кавитации, когда мелкие пузырьки просто разъедают стенки и другие детали устройства.
В переднеприводных автомобилях, столь популярных сегодня, сосуществуют два принципиально разных вида амортизаторов – классические задние и передние, типа McPherson. McPherson – это амортизаторы с телескопической гидравлической передней стойкой довольно сложной конструкции.
Как проверить неисправность автомобильных амортизаторов?
Исправные амортизаторы. Не чувствуешь тряски и вибрации, да и шума в автомобиле меньше. Состояние амортизаторов сказывается на всем, что связано с автомобилем. Плохие амортизаторы – это и ухудшенный разгон машины, и проблемы с плавностью хода, торможением, прохождением поворотов и преодолением подъемов и спусков – словом, все, что способно привести к аварии из-за увеличившегося вследствие вибрации проскальзывания колес.
Между тем, самостоятельная проверка исправности амортизатора весьма проста.
Достаточно визуальным осмотром определить, нет ли потеков жидкости на корпусе амортизатора, а затем интенсивно покачать автомобиль по очереди за каждый угол, нажав на крыло или бампер три-четыре раза. После этого кузов должен совершить лишь одно “возвратное” движение до номинального уровня. Если же машина качается дольше или при этом слышны отчетливые стуки, амортизатор можно считать неисправным и его стоит заменить.
Также, важно: Стоит ли менять пружины при замене амортизаторов.
Какие амортизаторы лучше поставить?
Замена амортизатора влияет на соотношение комфорт/управляемость довольно значительно. Необходимо заметить, что когда вы улучшаете один параметр, ухудшается другой. А вот что важнее и насколько — вам следует определиться самим, всё равно не получив консультации специалистов вам не обойтись. А вообще вам следует знать, что многие автопроизводители всегда указывают, какие амортизаторы подходят для вашего автомобиля.
Большинство амортизаторов специально рассчитаны только под определенный автомобиль. В любом специализированном магазине имеется каталог, по которому вы можете выбрать, какой амортизатор подходит для вашего авто.
Единственно, на что следует обратить внимание — нравится ли вам поведение своего автомобиля или нет. Но если вы умеете ценить управляемость, прекрасно справляетесь с критическими режимами, то хотите ли вы этого или нет, вам придется разобраться в настройках подвески. А если вы являетесь спокойным водителем, то есть большая вероятность того, что вы так и не узнаете, какие у вас стояли амортизаторы.
Более того, прежде чем ставить газонаполненные амортизаторы, учитывайте, что они намного жестче гидравлических. И для многих из нас «табуреточный» комфорт не искупается улучшенной управляемостью. Особенно будут недовольны пассажиры, которые не способны осознать прелесть таких понятий, как управляемый занос и езда в скольжении.
Следующий немаловажный параметр — это цена. Может отличаться на разные типы амортизаторов от разных производителей на порядок, а то и больше. А вот целесообразность — отдельная песня. Нет смысла ставить на подержанную технику дорогие амортизаторы. Поэтому снова и снова отправляем вас к специалистам, которые подскажут, когда менять амортизаторы и на что.
Основа подвески- амортизаторы
Самое главное о подвеске
Амортизаторы сегодня- это неотъемлемая часть подвески как на легковых, так и на грузовых автомобилях.
«Подвеска» автомобиля – общее понятие. Она служит для соединения колеса с кузовом автомобиля, но независимо от типа и конструктивных схем предназначена для обеспечения надёжного контакта колеса с поверхностью дороги и гашения колебаний кузова, вызванных неровностями дороги и инерционными силами при движении.
• При введении в подвеску упругого элемента (пружины или рессоры), толчок на кузов значительно смягчается, но вследствие инерции кузова колебательный процесс затягивается во времени, делая управление автомобилем трудным, а движение опасным. Автомобиль с такой подвеской раскачивается во всевозможных направлениях, и высока вероятность «пробоя» при резонансе (когда толчок от дороги совпадает со сжатием подвески в течение затянувшегося колебательного процесса).
• В современных подвесках, во избежание вышеперечисленных явлений, наряду с упругим элементом используют демпфирующий элемент – амортизатор. Он контролирует упругость пружины, поглощая большую часть энергии колебаний. При проезде неровности пружина, как и в предыдущем случае, сжимается. Когда же, после сжатия, она начнёт расширяться, стремясь превзойти свою нормальную длину, большую часть энергии зарождающегося колебания поглотит амортизатор. Продолжительность колебаний до возвращения пружины в исходное положение при этом уменьшится до 0,5 … 1,5 циклов.
Надёжный контакт колеса с дорогой обеспечивается не только шинами, основными упругими и демпфирующими элементами подвески (пружина, амортизатор), но и её дополнительными упругими элементами (буферы сжатия, резинометаллические шарниры), а также тщательным согласованием всех элементов между собой и с кинематикой направляющих элементов.
Таким образом, чтобы Ваш автомобиль «парил» над дорогой, между кузовом и дорожным полотном должны быть:
– шины
– основные упругие элементы
– дополнительные упругие элементы
– направляющие устройства подвесок
– демпфирующие элементы.
Шины первыми в автомобиле воспринимают неровности дороги и, насколько это возможно, в силу их ограниченной упругости, смягчают колебания от микропрофиля дороги.
Шины могут служить индикатором исправности подвески: быстрый и неравномерный (пятнами) износ шин свидетельствует о снижении сил сопротивления амортизаторов ниже допустимого предела.
Основные упругие элементы (пружины, рессоры) удерживают кузов автомобиля на одном уровне, обеспечивая упругую связь автомобиля с дорогой. В процессе эксплуатации упругость пружин меняется вследствие старения металла или из-за постоянной перегрузки, что приводит к ухудшению характеристик автомобиля:уменьшается высота дорожного просвета, изменяются углы установки колёс, нарушается симметричность нагрузки на колёса.
Пружины, а не амортизаторы удерживают вес автомобиля. Если дорожный просвет уменьшился и автомобиль «просел» без нагрузки, значит, пришло время менять пружины.
Дополнительные упругие элементы (резинометаллические шарниры или сайлентблоки, буферы сжатия) отвечают за подавление высокочастотных колебаний и вибраций от соприкосновения металлических деталей. Без них срок службы элементов подвески резко сокращается (в частности в амортизаторах: из-за усталостного износа клапанных пружин).
Регулярно проверяйте состояние резинометаллических соединений подвески. Поддерживая их работоспособность, Вы увеличите срок службы амортизаторов.
Направляющие устройства (системы рычагов, рессоры или торсионы) обеспечивают кинематику перемещения колеса относительно кузова. Задача этих устройств в том, чтобы сохранять плоскость вращения колеса (двигающегося вверх при сжатии подвески и вниз при отбое) в положении близком к вертикальному, т.е. перпендикулярно дорожному полотну.
Если геометрия направляющего устройства нарушена, поведение автомобиля резко ухудшается, а износ шин и всех деталей подвески, в том числе и амортизаторов, значительно ускоряется.
Отдельное внимание стоит уделить подвеске McPherson: во-первых, такая подвеска получила исключительное распространение на переднеприводных автомобилях, а во-вторых в этой подвеске амортизатор играет роль направляющего элемента и нагружен боковыми силами.
Демпфирующий элемент гасит колебания кузова, вызванные неровностями дороги и инерционными силами, а следовательно, уменьшает их влияние на пассажиров и груз. Он также препятствует колебаниям неподрессоренных масс (мосты, балки, колёса, шины, оси, ступицы, рычаги, колёсные тормозные механизмы) относительно кузова, улучшая тем самым контакт колеса с дорогой.
Работа амортизатора
Амортизаторы, как демпфирующий элемент современной подвески, получили наибольшее распространение в силу сочетания эффективности в работе, надёжности и технологичности изготовления. Основной функцией амортизатора является обеспечение надёжного контакта колеса с дорогой, комфорта и безопасности.
Для выполнения своей функции амортизатор должен поглощать определённое количество энергии колебаний, и если точнее, то не поглощать, а преобразовывать её в тепловую. Количество поглощаемой энергии зависит от массы автомобиля, жёсткости пружины и частоты колебаний.
Работа гидравлического и гидропневматического амортизаторов основывается на двух основных свойствах жидкости: её несжимаемости и вязкости.
Все производимые в мире амортизаторы делятся на две группы:
• Гидравлические (или масляные)
• Гидропневматические (или газонаполненные)
Принцип работы гидравлического амортизатора достаточно прост. В рабочем цилиндре, заполненном специальной гидравлической жидкостью, перемещается шток с поршнем, имеющим точно калиброванную систему клапанов. Рабочие характеристики подбираются индивидуально для наилучшего гашения колебаний подвески каждого автомобиля.
Поясним формирование гидравлической характеристики амортизатора:
• Если все клапаны «намертво» закрыты, а прохождение гидравлической жидкости происходит только через обходной канал в поршне, получится абсолютно жёсткая линейная характеристика. Если включить в работу клапаны сообщения с компенсационной камерой – характеристика станет «мягче». Несимметричность объясняется тем, что клапан, открывающийся на «сжатии», имеет большее проходное сечение, чем клапан, работающий на «отбое».
• Если задействовать основные клапаны, расположенные в поршне, форма характеристики уже нелинейна и по мере открытия клапанов и увеличения общего проходного сечения каналов, становится всё менее «жёсткой».
Думая о настройке подвески, надо временно абстрагироваться от брендов и рекламных кампаний. Прежде всего надо решить, какой тип амортизаторов соответствует персональному концепту вашего драйва. Академические понятия функциональности амортизатора звучат весьма определенно – гасить вертикальные колебания. Кроме того, нельзя забывать и о влиянии амортизаторов на разгонную и тормозную динамику. Так, при разгоне автомобиль «приседает» назад, нагружая задние и разгружая передние колеса, снижая тем самым их сцепление с дорогой. При торможении наблюдается обратная картина. Основная нагрузка ложится на передние колеса, а задние лишь слегка притормаживают.
И в той и в другой ситуации идеальным было бы состояние, при котором автомобиль сохранял бы свое нормальное «горизонтальное» положение. Примерно та же картина и при маневрировании, но здесь нагрузка смещается не по осям, а по сторонам автомобиля. Резюмируя, можно сказать, что главной задачей амортизаторов является удержание колеса в постоянном контакте с дорогой во избежание потери контроля над автомобилем. Для чего колесо должно как можно мягче и четче обогнуть препятствие и так же четко и быстро вернуться на дорогу, обеспечивая необходимое сцепление. Современные тенденции сводятся к тому, что, к примеру, пружины или рессоры лишь поддерживают вес автомобиля. Всю остальную работу берут на себя именно амортизаторы, как более точный инструмент. Вот почему так важен их правильный выбор.
При работе амортизатора необходимо предусмотреть множество различных вариантов и характеристик его функционирования. Ведь дорога имеет куда более сложное покрытие, чем в теории, да и автомобиль едет не всегда по прямой. Нюансов очень много. К примеру, несколько последовательных кочек заставляют его работать прерывисто: не успев толком распрямиться, амортизатор снова должен работать на сжатие. Нужно обеспечить и комфортное обрабатывание мелких неровностей, а на крупных избежать полного сжатия амортизатора, грозящего его пробоем. Здесь, как нигде более, важен компромисс – оптимальный баланс между комфортностью и точной управляемостью. Следующая большая проблема – теплообразование. И чем выше вязкость жидкости или меньше перепускные отверстия поршня, тем выше жесткость амортизатора и больше выделяется температуры при его работе. Отвод тепла – очень важная задача. Но и минусовая температура доставляет немало проблем. При большом минусе масло, находящееся внутри амортизатора, может загустеть, что сделает амортизатор более жестким. Характеристики могут меняться до нескольких десятков процентов. В данном случае все решает правильный подбор масла. Далее вопрос – аэрация. Поскольку в современных амортизаторах наряду с маслом присутствует и некий газ, они могут смешиваться в процессе работы, и масло превращается в пену. А поскольку пена, в отличие от масла, может быть сжата, это резко снижает эффективность демпфирования. Не менее важный вопрос – расположение амортизаторов. Наиболее выгодное, с точки зрения работы, место – как можно ближе к колесу, точно перпендикулярно плоскости подвески. Установка амортизатора под углом (как это часто бывает) снижает его демпфирующую эффективность (отклонение от перпендикуляра подвески +/– 50О – эффективность амортизатора 68%). Все вышесказанное возводит амортизаторы с позиции банального (с точки зрения простого обывателя) автомобильного узла в сложнейшую и многогранную науку. И как в любой другой области, здесь также существуют различные конструкторские и компоновочные решения поставленных задач. По своей конструкции амортизаторы можно разделить на несколько основных типов. По архитектуре их принято делить на одно– и двухтрубные. По наполнению: жидкостные (гидравлические) и газовые (с гидравлическим газовым подпором). Существуют и чисто газовые амортизаторы, в которых используется очень высокое давление газа (порядка 60 атм), но они не столь распространены.
(Принципиальная схема двухтрубного гидравлического амортизатора)
Гидравлические двухтрубные амортизаторы – некогда самый распространенный и дешевый тип демпфирующих стоек. Они довольно просты по конструкции и не столь требовательны к качеству изготовления. Состоит такой амортизатор из двух трубок: рабочей колбы, где и находится поршень, и внешнего корпуса, предназначенного для хранения избыточного масла. Поршень перемещается во внутренней колбе, пропуская масло через собственные каналы и выдавливая часть масла через клапан, находящийся снизу колбы. Этот клапан иногда называют клапаном сжатия, поскольку зачастую он отвечает за перетекание масла именно в данном такте. Эта часть жидкости просачивается в полость между колбой и внешним корпусом, где сжимает воздух, находящийся при атмосферном давлении в верхней части амортизатора. При движении назад задействуются клапана самого поршня, регулируя усилие на отбой. Длительное время именно такая конструкция превалировала на рынке амортизаторов. Но годы эксплуатации выявили ряд ее недостатков. Основным минусом является вышеупомянутая аэрация. Особенно при интенсивной работе такого амортизатора. Замена воздуха азотом (азот, будучи инертным газом, не давал деталям амортизатора корродировать, в отличие от воздуха) несколько улучшила его работу, но не решила проблему полностью. Кроме того, такие амортизаторы, имея фактически двойной корпус, хуже охлаждаются, что также отрицательно сказывается на их работе. С другой стороны, если делать их большего диаметра, удается повысить демпфирующие характеристики, одновременно снижая рабочее давление и, как следствие, температуру.
(Принципиальная схема регулируемого двухтрубного гидравлического амортизатора с газовым подпором (на примере конструкции амортизаторов фирмы Koni) )
Такие гидропневматические амортизаторы имеют схожую конструкцию и принцип действия с обычными гидравлическими двухтрубными стойками. Основное отличие в том, что вместо воздуха под атмосферным давлением находится инертный газ (чаще азот) под некоторым давлением (от 4 до 20 атм и более, в зависимости от назначения). Это и есть так называемый газовый подпор. Значение давления газа может быть различным для разных условий эксплуатации автомобиля. Кстати, чем больше диаметр патрона, тем меньшее необходимо давление газового подпора. Оно может различаться также для передних и задних амортизаторов. Чем же помогает газовый подпор? Прежде всего – пресловутая аэрация. Будучи под давлением, газ не смешивается с маслом столь сильно, как в предыдущем случае, улучшая работу амортизатора. Но полностью данная проблема не решена и здесь. Кроме снижения аэрации масла, газовый подпор способствует поддержанию автомобиля, выполняя роль дополнительного демпфера. То есть, даже если пружины уже сжались бы, газовый заряд в амортизаторе удерживает правильное положение автомобиля, что положительно влияет на его управляемость. Такой конструктивный подход позволяет инженерам более гибко подходить к настройкам работы амортизатора, делая его более универсальным, чем обычные гидравлические. Общая проблема всех двухтрубных амортизаторов – невозможность установки «вверх ногами». Этому мешает наполняющий их газ.
(Регулируемый амортизатор системы CDC на автомобиле Opel Astra разработки ZF)
Такие амортизаторы, как следует из названия, имеют лишь одну колбу, которая является и рабочим цилиндром, и корпусом одновременно. Работают они так же, как и двухтрубные, но в данной конструкции газ находится в том же цилиндре и отделен от масла особым плавающим поршнем (так называемая схема De Carbon). Газ (чаще азот) находится в своей камере, отделенной от масла, под высоким давлением (20–30 атм). Однотрубные амортизаторы не имеют нижнего клапана сжатия, как двухтрубные. Это означает, что всю работу по управлению сопротивлением и при сжатии, и при отбое берет на себя поршень. В этой связи, несмотря на кажущуюся простоту этого узла, подбор его конструкции, размера, формы и количества отверстий является весьма сложной задачей. В целом такие амортизаторы имеют высокие рабочие характеристики. Они еще точнее держат автомобиль, способствуя лучшей управляемости. Кроме того, они эффективнее охлаждаются, поскольку воздухом обдувается непосредственно рабочий цилиндр. Плюс к этому в тех же габаритах, что и двухтрубные амортизаторы, внутренний диаметр рабочей колбы будет больше, равно как и диаметр поршня. Это означает больший объем масла, более стабильные характеристики и, опять же, лучшая теплоотдача. Но есть и минусы. В отличие от своих двухтрубных «коллег», однотрубные более уязвимы от внешних повреждений. Замятая колба однозначно приводит к замене стойки, тогда как двухтрубные имеют своего рода страховку, или, если можно так назвать, щит в виде внешнего цилиндра. К минусам можно отнести также высокую чувствительность однотрубных амортизаторов к температуре. Чем она выше, тем выше давление газового подпора и жестче работает амортизатор. С другой стороны, однотрубные стойки можно устанавливать как угодно, поскольку газ плотно отделен от масла плавающим поршнем. Кстати, именно это обстоятельство позволяет автопроизводителям, устанавливая такой амортизатор штоком вниз, снижать неподрессоренные массы. Здесь же нужно сказать и о том, что часто можно встретить амортизаторы с надетой на них пружиной. Этот вариант конструкции не относится исключительно к однотрубным стойкам. Просто так добавляется дополнительный упругий элемент, а порой он и вовсе заменяет основную пружину. Такие конструкции часто имеют возможность регулировки клиренса автомобиля. Подкручивая особую винтовую гайку на корпусе амортизатора, поддерживающую пружину снизу, можно поднять или опустить автомобиль, соответственно поджав либо отпустив пружину. Своего рода эволюцией однотрубных амортизаторов являются «однотрубники» с выносной компенсационной камерой. В них камера с газовым подпором вынесена за пределы самого амортизатора в отдельный резервуар. Такая конструкция позволяет, не увеличивая размеры самого амортизатора, увеличить объем и газа, и масла, что серьезно влияет на температурный баланс (они более эффективно охлаждаются) и стабильность характеристик. Плюс к этому имеют больший рабочий ход. Но еще больший эффект от выносной камеры в том, что на пути масла, перетекающего из основного рабочего цилиндра в допкамеру, можно установить систему клапанов, которые будут играть роль клапана сжатия, как в двухтрубной конструкции. Отделив друг от друга клапана, работающие на сжатие и отбой, можно заложить много диапазонов регулировки. Можно менять жесткость работы амортизатора для различных скоростей движения поршня, например малую, среднюю и большую. И позиций таких регулировок может быть 10 и более. Порой можно встретить и весьма экстравагантную систему с набором перепускных клапанов. Кроме большого внешнего резервуара, амортизатор облеплен несколькими трубками, на концах которых находятся регулировочные головки под гаечный ключ или отвертку. По этим трубкам масло перепускается из над– и подпоршневых камер друг в друга. Регулируя эти перепускные каналы, можно получить нужные характеристики работы амортизатора на определенных режимах или, если быть точным, положениях поршня. То есть такие амортизаторы чувствительны не только к скорости перемещения поршня, но и к его позиции внутри колбы. Кроме этого, наличие большего числа трубок, по которым проходит масло, способствует лучшему его охлаждению.
(Магнитная жидкость; Плоский поток (параболический профиль скорости перемещения))
Кроме примеров борьбы с явлением аэрации, были и другие варианты совершенствования конструкции таких амортизаторов. Так, например, компания Monroe, используя особые заостренные бороздки на стенках рабочей колбы, добивалась точной настройки характеристик амортизатора как для спокойной, так и для активной езды. Нужно отметить и примеры регулируемых амортизаторов, построенных по двухтрубной газонаполненной схеме. Стандартные амортизаторы также обладают возможностью регулировки, но для этого их необходимо разбирать. А есть варианты конструкций, предлагающие внешнюю регулировку жесткости. Так, фирма Koni применяет особый регулировочный штырь, проходящий через шток. Загнутый конец этого штыря, поворачивая особую эксцентриковую шайбу, создает дополнительную нагрузку на нижние пластины, позволяя настроить усилия хода отбоя. Ряд фирм осуществляют регулировку жесткости работы амортизатора схожим образом, но с использованием системы перепускных каналов в штоке, отвечающих за протекание масла, минуя дроссель. Интересный вариант регулировки жесткости предлагает фирма Kayaba. На ее амортизаторах серии AGX используется клапан, расположенный сбоку амортизатора в нижней части стойки, также регулирующий перепускание масла в обход поршня. У конструкций с выносными резервуарами возможностей настройки, как было сказано выше, куда больше, но все это механические системы, требующие остановки и ручной корректировки. Такой вариант мало подходит к современным серийным автомобилям, производители которых стремятся создать водителю и пассажирам максимальный комфорт и удобства. Для этих целей разрабатываются новые варианты амортизаторов, имеющих автоматические регулировки жесткости. Первые такие устройства представляли собой сложнейшие гидравлические системы, работающие под высоким давлением и регулирующие характеристики работы амортизаторов посредством изменения давления масла в рабочем цилиндре. В настоящее время им на смену пришли иные устройства, позволяющие изменять характеристики работы амортизаторов посредством электрических клапанов, причем как в ручном, так и в автоматическом режиме. В качестве примера можно привести систему CDC (Continuous Damping Control – непрерывный контроль демпфирования) фирмы ZF, использованную на автомобиле Opel Astra. Здесь применена схема обычного двухтрубного амортизатора с газовым подпором. Регулировка усилия на сжатие и отбой осуществляется посредством двух электромагнитных клапанов, установленных сбоку в нижней части амортизатора и внутри самого поршня. Процессорное управление отслеживает множество параметров (скорость, вертикальное ускорение каждого колеса, угол поворота руля и т. д.) и регулирует жесткость по каждому из амортизаторов в отдельности. Есть и куда более изящная разработка, имеющая, на мой взгляд, весьма радужные перспективы. В прошлом году компания General Motors представила магнитные амортизаторы на моделях Cadillac Seville и Chevrolet Corvette. Совместно с корпорацией Delphi была разработана система MRC (Magnetic Ride Control – магнитный контроль перемещения). В данной системе отсутствуют привычные способы регулировки усилия. Всю работу берет на себя магнито-реологическая жидкость. Эта жидкость работает как и в обычных амортизаторах, но при этом под воздействием электромагнитного поля, генерируемого специальными электромагнитными катушками, она способна менять свою вязкость. Причем менять с частотой 1000 раз/сек, и регулировка происходит фактически мгновенно. Реакция системы занимает всего одну миллисекунду. Нет ни двигателей, ни соленоидов, ни каких бы то ни было сложных клапанных систем. Такой магнитный амортизатор проще своих классических «коллег», но, к сожалению, пока не дешевле. Виной тому все еще высокая стоимость устойчивых к расслоению магнито-реологических жидкостей с достаточно широким температурным диапазоном работы. Но очень похоже, что будущее за подобной схемой. Уж очень много преимуществ. Упрощаются сам амортизатор и подвеска. Исключается необходимость в стабилизаторах поперечной устойчивости. Потрясающие возможности контроля жесткости подвески. Много плюсов.