Электродвижущая сила (ЭДС) обмотки машин переменного тока
Определим ЭДС проводника и витка с полным шагом y = t.
При этом, так как проводники находятся в одинаковых магнитных условиях, то ЭДС витка будет равна арифметической сумме (см. рис.).
. , ,
Действующее значение ЭДС проводника
2. ЭДС витка с полным шагом
3. ЭДС витка с укороченным шагом
Если виток имеет шаг y
. (Зная Кр, определим Eг).
В электрической машине необходимо различать пространственный и электрический угол.
Пример. 2Р = 4, Р = 2 получим в одной пространственной окружности две электрических.
— ЭДС катушечной группы
ЭДС катушки , запишем отношение
, тогда коэффициент распределения
; — ЭДС катушечной группы.
6. Определение ЭДС фазы.
Фаза состоит из нескольких катушечных групп, все катушечные группы расположены в одинаковых магнитных условиях, поэтому ЭДС фазы будет равна ЭДС катушечной группы умноженной на число их в фазе.
Если обмотка однослойная, то число катушечных групп в фазе равно числу пар полюсов – Р,
Если обмотка двухслойная, то число катушечных групп в фазе равно числу полюсов – 2Р
, перепишем иначе
, К0 = Ку × Кр
где W – число витков в фазе;
Ф – магнитный поток в веберах;
Ф×Ку – максимально сцепленный поток с катушкой.
Это выражение ЭДС фазы для первой гармоники.
ЭДС от высших гармоник потока
В общем случае кривая магнитного потока на полюс несинусоидальна. Если ее разложить, то кроме первой гармоники будут гармоники высшего порядка.
ЭДС от потока n гармоники запишется
полюсное деление , а число полюсов .
1. (для генератора)
2.
3. . ,
Если укорочение , то исчезнет пятая гармоника ЭДС
, ,
уменьшатся и 3 и 7 гармоники.
Пояснение, почему исчезает пятая гармоника ЭДС. Укорочение на 1/5t приводит к тому, что по контуру Е5 направлены встречно и их сумма равна 0.
Укорочение шага приводит к исчезновению пятой гармоники, третья гармоника уменьшается на половину, отсюда видно, что укорочение шага приводит к тому, что кривая ЭДС приближается к синусоиде и
он также меньше, чем для основной гармоники ЭДС.
Теперь можно подсчитать фазную ЭДС любой гармоники. Если обмотки соединены звездой, то в кривой линейных ЭДС – ЭДС кратным 3-м не будет. Если обмотки соединены в треугольник, то в линейных ЭДС их также не будет, т.к. они замкнутся по контуру.
Электродвижущая сила (ЭДС) обмотки машин переменного тока
Определим ЭДС проводника и витка с полным шагом y = t.
При этом, так как проводники находятся в одинаковых магнитных условиях, то ЭДС витка будет равна арифметической сумме (см. рис.).
. , ,
Действующее значение ЭДС проводника
2. ЭДС витка с полным шагом
3. ЭДС витка с укороченным шагом
Если виток имеет шаг y
он также меньше, чем для основной гармоники ЭДС.
Теперь можно подсчитать фазную ЭДС любой гармоники. Если обмотки соединены звездой, то в кривой линейных ЭДС – ЭДС кратным 3-м не будет. Если обмотки соединены в треугольник, то в линейных ЭДС их также не будет, т.к. они замкнутся по контуру.
Дата добавления: 2019-07-26 ; просмотров: 545 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Однофазные электрические цепи переменного тока
Содержание:
Однофазные электрические цепи переменного тока:
Для получения, передачи и распределения электрической энергии применяются в основном устройства переменного тока: генераторы, трансформаторы, линии электропередачи и распределительные цепи переменного тока.
Постоянный ток, необходимый в некоторых областях народного хозяйства (транспорт, связь, электрохимия и др.), получают выпрямлением переменного тока.
Переменным электрическим током называют ток, периодически изменяющийся по величине и направлению.
Основное достоинство переменного тока заключается в возможности трансформировать напряжение. Кроме того, электрические машины переменного тока надежней в работе, проще по устройству и эксплуатации.
Говоря о переменном токе, обычно имеют в виду синусоидальный переменный ток, т. е. ток, изменяющийся по синусоидальному закону. При синусоидальном токе ЭДС электромагнитной индукции, самоиндукции и взаимоиндукции изменяются по синусоидальному закону.
Синусоидальный переменный ток проходит в замкнутой линейной электрической цепи под действием синусоидальной ЭДС.
Рассмотрим получение синусоидальной ЭДС. Если в однородном магнитном поле с индукцией В равномерно со скоростью V вращается рамка (рис. 10.1), то в каждой активной стороне этой рамки длиной
Плоскость называется нейтральной, т. к. ЭДС в рамке, расположенной в этой плоскости, равна нулю (а = 0, следовательно, sin а = 0).
как — величина постоянная по условию, то е пропорциональна sin а, т. е. ЭДС в этой рамке, при вращении ее вокруг оси изменяется по синусоидальному закону. Если к этой рамке включить нагрузку (потребитель), то в замкнутой цепи (рис. 10.1) идет ток, который, как и ЭДС, изменяется по синусоидальному ну. Поэтому такой ток и называется синусоидальным.
Синусоидальная ЭДС изображена на графике рис. 10.2. график принято называть «волновая диаграмма». (Если изменяющаяся величина изображена в зависимости от времени то ее называют «временная диаграмма».) На этой диаграмме синусоида ограничивает величины ЭДС (ординаты) при раз-личных углах поворота рамки относительно нейтральной плоскости NN». Как видно, синусоидальная ЭДС изменяется по величине и направлению.
Величины, характеризующие синусоидальную ЭДС
Амплитуда — это максимальное значение периодически изменяющейся величины.
Обозначаются амплитуды прописными буквами с индексом m, т. е.
Нетрудно видеть (рис. 10.2), что ЭДС достигает своих амплитудных значений тогда, когда рамка повернется на угол а = 90° или на угол а = 270°, так как . Следовательно,
Тогда
Обозначается период буквой Т и измеряется в секундах, с (сек) т.е. = с.
Значение ЭДС через каждый период определяется следующим равенством (рис. 10.3):
На рис. 10.3 изображена временная диаграмма синусоидальной ЭДС при вращении рамки в магнитном поле.
Обозначается частота буквой , и измеряется в герцах (Гц):
При частоте =50 Гц, т.е. 50 периодов в секунду, период
Угловая частота (угловая скорость) характеризуется углом поворотом рамки в единицу времени.
Обозначается угловая частота буквой (омега):
Измеряется угловая частота в единицах радиан в секунду, так как угол измеряется в радианах (рад).
Так, время одного периода Т рамка повернется на угол 360° = рад. Следовательно, угловую частоту можно выразить следующим образом:
Мгновенное значение — это значение переменной величины в й конкретный момент времени.
Мгновенные значения обозначаются строчными буквами..
Из выражения (10.2) следует, что угол поворота рамки , мгновенные значения синусоидальных величин можно записать так:
Таким образом, любая синусоидальная величина характеризуется амплитудой и угловой частотой, которые являются постоянными для данной синусоиды. Следовательно, по формулам (10.4) можно определить синусоидальную величину в любой конкретный момент времени t, если известны амплитуда и угловая частота.
Фаза и сдвиг фаз
Если в магнитном поле вращаются две жестко скрепленные между собой под каким-то углом одинаковые рамки (рис. 10.4а), т.е. амплитуды ЭДС и угловые частоты со их одинаковы, то мгновенное значение их ЭДС можно записать в виде
где — углы, определяющие значения синусоидальных величин в начальный момент времени (t = 0), т.е.
Поэтому эти углы называют начальными фазами синусоид.
Начальные фазы этих ЭДС различны.
Таким образом, согласно (10.5) каждая синусоидальная величина характеризуется амплитудой , угловой частотой со и начальной фазой . Для каждой синусоиды эти величины являются постоянными. В выражениях (10.4) начальные фазы синусоид равны нулю ( = 0).
Величина называется фазой синусоиды.
Разность начальных фаз двух синусоидальных величин одинаковой частоты определяет угол сдвига фаз этих величин:
При вращении против часовой стрелки (рис. 10.4а) ЭДС в первой рамке достигает амплитудного и нулевого значения раньше, чем во второй, т. е. опережает по фазе или отстает по фазе (рис. 10.46). Угол сдвига фаз показывает, на какой угол синусоидальная величина опережает или отстает от другой, достигает своих амплитудных и нулевых значений раньше позже).
Две синусоидальные величины одинаковой частоты, достигаю-одновременно своих амплитудных (одного знака) и нулевых сечений, считаются совпадающими по фазе (рис. 10.5а).
Если две синусоиды одинаковой частоты достигают одновременно своих нулевых и амплитудных значений разных знаков (рис. 10.56), то они находятся в противофазе.
Время, на которое одна синусоидальная величина опережает и отстает от другой, характеризует время сдвига фаз , которое можно выразить через период Т и частоту синусоиды следующим образом:
Среднее и действующее значения переменного тока
Кроме амплитудных и мгновенных значений переменный ток, напряжение, ЭДС характеризуются еще средними и действующими (эффективными) значениями.
Среднее значение переменного тока
Среднее значение переменного тока равно величине такого постоянного тока, при котором через поперечное сечение провод-проходит то же количество электричества Q, что и при переменном токе.
Таким образом, среднее значение переменного тока эквивалентно постоянному току по количеству электричества Q, проходящему через поперечное сечение проводника в определенный промежуток времени.
Средние значения переменных величин обозначаются прописными буквами с индексом «с», т. е. .
Если ток изменяется по синусоидальному закону, то за половину периода через поперечное сечение проводника проходит определенное количество электричества Q в определенном направлении, а за вторую половину периода через то же сечение проходит то же количество электричества в обратном направлении. Таким образом, среднее значение синусоидального тока за период равно нулю, т. е. = 0.
Поэтому для синусоидального переменного тока определяется его среднее значение за половину периода Т/2, т. е.
Из выражения (2.1) значение переменного тока , откуда . Следовательно, среднее значение синусоидального тока с начальной фазой = 0 за полупериод определяется (рис. 10.6) выражением
где
Графически среднее за полупериод значение синусоидального тока равно высоте прямоугольника с основанием, равным Т/2, и площадью, равной площади, ограниченной кривой тока и осью абсцисс за половину периода (рис. 10.6).
Под средним значением переменной величины понимают постоянную составляющую этой величины.
Средние значения синусоидального напряжения и ЭДС за полупериод можно определить по аналогии с током.
Действующее значение переменного тока
Действующее (или эффективное) значение переменного тока — значение переменного тока, эквивалентное постоянному току тепловому действию.
Действующее значения переменных величин обозначается прочими буквами без индексов: I, U, Е.
Действующее значение переменного тока I равно величине такого постоянного тока, которое за время, равное одному периоду первого тока Т, выделит в том же сопротивлении R такое же количество тепла, что и переменный ток i:
Откуда действующее значение переменного тока
Если переменный ток изменяется по синусоидальному закону с начальной фазой, равной нулю, т.е. , то действующее сечение такого синусоидального тока будет равно
Номинальные значения тока и напряжения в электрических цепей и устройствах выражаются их действующими значениями.
Так, например, стандартные напряжения электрических сетей U= 127 В или U = 220 В выражают действующие значения этих напряжений. А изоляцию необходимо рассчитывать на амплитудное значение этих напряжений, т. е.
При расчете цепей переменного тока и их исследованиях чаще всего пользуются действующими (эффективными) значениями тока, напряжения и ЭДС.
На шкалах измерительных приборов переменного тока указывается действующие значение переменного тока или напряжения.
Именно действующие значения тока, напряжения и ЭДС указываются в технической документации, если нет специальных оговорок.
Коэффициенты формы и амплитуды
Отклонения кривых тока, напряжения и ЭДС от синусоиды характеризуются коэффициентами формы и амплитуды .
Коэффициент формы определяется отношением действующего значения переменной величины к ее среднему значению:
Коэффициент формы необходимо учитывать при проектировании и изучении выпрямительных устройств и электрических машин.
Для синусоидальных величин коэффициент формы будет равен
Коэффициент амплитуды определяется отношением амплитудного значения переменной величины к ее действующему значению:
Для синусоидальных величин коэффициент амплитуды равен
Чем больше коэффициент формы и коэффициент амплитуды отличается от значений = 1,11 и = 1,41, тем больше рассматриваемая кривая отличается от синусоиды. Так, например, если = 1,41, то исследуемая кривая имеет более острую форму, чем синусоида, а если
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.