Датчик индуктивного типа авто

Индуктивные датчики

Датчики индуктивного типа используются главным образом для измерения скорости и положения вращающихся деталей. Их действие основывается на известном принципе электрической индукции (изменение магнитного потока наводит э.д.с. в катушке). На рисунке показан принцип действия индуктивного датчика и типичный прибор, применяемый в качестве датчика скорости вращения и положения коленчатого вала двигателя.

Vid induktivnogo datchika

Выходное напряжение большинства индуктивных датчиков имеет синусоидальную форму. Амплитуда сигнала зависит от скорости измерения магнитного потока и в основном определяется оригинальной конструкцией датчика: числом витков в катушке, силой магнита и величиной зазора между датчиком и вращающейся деталью. Как уже отмечалось, выходное напряжение увеличивается с ростом скорости вращения. В большинстве случаев используется частота сигнала. Наиболее часто для преобразования выходного напряжения индуктивного датчика в полезный сигнал его пропускают через триггер Шмидта. Он позволит создать напряжение прямоугольной формы постоянной амплитуды и переменной частоты.

Induktivny j datchik na baze upravlyaemogo generatora kolebanij

Рис. Индуктивный датчик на базе управляемого генератора колебаний

В некоторых случаях выход датчика используется для переключения генератора колебаний в рабочий режим и обратно или же для подавления колебаний. Схема такого варианта показана на рисунке. Генератор создает колебания высокой частоты порядка 4 МГц, которые далее коммутируются сигналом датчика, а потом фильтруются, что даст на выходе сигнал прямоугольной формы. Такая схема обладает высокой помехоустойчивостью.

Источник

Датчик индуктивного типа авто

book Бесплатная техническая библиотека:
▪ Все статьи А-Я
▪ Энциклопедия радиоэлектроники и электротехники
▪ Новости науки и техники
▪ Архив статей и поиск
▪ Ваши истории из жизни
▪ На досуге
▪ Случайные статьи
▪ Отзывы о сайте

bookТехническая документация:
▪ Схемы и сервис-мануалы
▪ Книги, журналы, сборники
▪ Справочники
▪ Параметры радиодеталей
▪ Прошивки
▪ Инструкции по эксплуатации
▪ Энциклопедия радиоэлектроники и электротехники

book Бесплатный архив статей
(500000 статей в Архиве)

bookАлфавитный указатель статей в книгах и журналах

addБонусы:
▪ Ваши истории
▪ Викторина онлайн
▪ Загадки для взрослых и детей
▪ Знаете ли Вы, что.
▪ Зрительные иллюзии
▪ Веселые задачки
▪ Каталог Вивасан
▪ Палиндромы
▪ Сборка кубика Рубика
▪ Форумы
▪ Голосования
▪ Карта сайта

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua

Ukr
сделано в Украине

l8831

Индукционные датчики в автомобиле

section library

Среди многообразия бесконтактных датчиков, по неприхотливости к внешним условиям, простоте изготовления и долговечности наиболее привлекательны индукционные (или генераторные) датчики.

Остановимся на процессе, проходящем в генераторном датчике. В простейшем случае датчик состоит из катушки с обмоткой, сердечника из магнитомягкого железа и магнита. Эти три компонента составляют статор датчика. Со статором взаимодействует ротор в виде зубчатого диска или зубчатой рейки с количеством зубцов, определяемым условиями применения датчика (рис.1).

avt 3oo1
Рис.1

При вращении ротора, в обмотке статора возникает переменное напряжение. Когда один из зубцов ротора приближается к обмотке, напряжение в ней быстро возрастает и, при совпадении со средней линией обмотки, достигает максимума, затем, при удалении зуба, быстро меняет знак и увеличивается в противоположном направлении до максимума. На приводимом графике (рис.2) отчетливо видна большая крутизна изменения напряжения, поэтому переход между двумя максимумами может быть использован для управления электронными системами.

avt 3oo2
Рис.2

Величина напряжения, вырабатываемого датчиком, зависит от частоты вращения ротора, числа витков катушки и величины магнитного потока, создаваемого постоянным магнитом. Поскольку две последние величины постоянны, величина индуцируемого напряжения достигает максимума при максимальной частоте вращения. При конструировании следует уделять особое внимание усилению импульсов при малой частоте следования.

Сфера применения подобных датчиков обширна, остановимся на некоторых примерах.

Датчик качания или удара (рис.3)

На спиральной пружинке из тонкой проволоки укреплен небольшой кусочек магнитомягкого железа, при качании или толчке он взаимодействует со статором датчика, который вырабатывает серию апериодических импульсов.

avt 3oo3
Рис.3

avt 3oo4
Рис.4

Для измерения скорости движения автомобиля зубчатый ротор укрепляется на выходном валу коробки передач или на блоке коробки передач вместо гибкого вала. Система позволяет отказаться от дорогого таходатчика или механически малонадежного гибкого вала (рис.5).

avt 3oo5
Рис.5

avt 3oo6
Рис.6

Зубчатый сектор укрепляется на редукторе. Считываемые импульсы позволяют плавно регулировать частоту хода щеток в зависимости от погодных условий.

Генераторный датчик (рис.1) является основой системы зажигания фирмы «BOSH».

В системе зажигания с цифровым управлением «Импульс-Техник» д-ра Хартига используется зубчатый венец маховика двигателя с дополнительным зубом для получения эталонного сигнала (рис.7). Данная система позволяет весьма точно регулировать момент зажигания.

avt 3oo7
Рис.7

Если вернуться к конструкции индукционного датчика, то следует заметить, что если на скорость вращения ротора влияют параметры измеряемой среды, то возникает вопрос о тормозящем моменте, оказываемом магнитным полем постоянного магнита. В этом случае принимаются меры по увеличению момента трогания (увеличивают площадь крыльчатки). Если по условиям эксплуатации не требуется контролировать небольшую частоту вращения, сердечник можно выполнить из магнитотвердого материала без дополнительного магнита, и за счет остаточного магнетизма получить достаточную величину сигнала.

В качестве примера можно привести параметры датчиков, нашедших применение в различных приборах.

Длина сердечника колеблется от 12 до 35 мм. С одной стороны сердечника предусмотрена площадка для прикрепления анизотропного магнита. Удобными оказались магниты от герконовых клавиатур. Свободный конец сердечника выводится из корпуса. Корпус датчика выполняется из немагнитного материала. Если требуют условия применения, датчик заливают компаундом.

Ротор, если его необходимо специально изготавливать, выполняют из магнитомягкого материала. Количество зубцов определяется из условий эксплуатации. Зазор между статором и ротором должен быть минимально возможным.

Сигнал с датчика поступает на вход простой электронной схемы (рис.8), усиливающей и формирующей сигнал для дальнейшего применения в аналоговой или цифровой форме.

avt 3oo8
Рис.8

Следует упомянуть еще одну особенность подобных датчиков. Они могут считывать сигнал не только от специального ротора, это могут быть зубья шестерни или даже крепежные болты на вращающейся детали.

informationСмотрите другие статьи раздела Автомобиль. Электронные устройства.

commentsЧитайте и пишите полезные комментарии к этой статье.

Источник

Как работают индукционные датчики положения и зачем нужна технология CIPOS

595e7c9s 100

Что объединяет ускорение, торможение, рулевое управление и переключение передач? Все эти относящиеся к безопасному вождению процессы требуют точной регистрации положения механических узлов и управления их перемещением. В современном автомобиле эти функции реализуются при участии бесконтактных индукционных датчиков положения, которые также известны как датчики траектории или датчики угла положения. Они и сейчас играют ключевую роль во всё большем числе автомобилей, а скоро без них и вовсе будет не обойтись. Объясняем, почему так, как они работают, что такое технология CIPOS и причём тут Hella.

EJCoE hsDi0hTzYT3bSFi s7 ok 960

Принципиальное устройство индукционных датчиков

Работа датчика основана на явлении электромагнитной индукции. Оно, кратко напомним школьный курс физики, состоит в том, что в замкнутом проводнике, находящемся в переменном магнитном поле, возникает электрический ток. Помните опыт, когда к выводам катушки из нескольких витков провода подсоединяли вольтметр, а затем вносили в катушку магнит? При этом стрелка вольтметра отклоняется — это происходит благодаря электромагнитной индукции.

Вот в этом видеоролике о самом явлении и истории его открытия рассказывается подробнее. Потратьте три минуты времени, чтобы освежить знания:

Обратите внимание: металлический магнит не касается витков катушки, но она реагирует на его приближение и удаление.

Теперь рассмотрим, как устроен индукционный датчик. Его принципиальная схема изображена на рисунке:

UrrkcfVpuNAJTNY0LM4xYnd8468 960

Под действием электрического тока, протекающего по катушке (2), в ней возникает магнитное поле. Поскольку магнитная проводимость у железного сердечника (1) лучше, чем у воздуха, магнитное поле концентрируется в сердечнике и рассеивается в воздухе.

Если вблизи сердечника катушки появляется металлический предмет (3), рассеивание магнитного поля уменьшается, магнитный поток в сердечнике возрастает. Изменение магнитного поля вызывает изменение величины электрического тока в катушке — на резисторе R меняется напряжение — датчик срабатывает. Другими словами, появление в магнитном поле катушки металлического предмета изменяет её индуктивность — изменение индукции фиксируется электроникой. (Разумеется, в реальности картина сложнее, но для принципиального понимания работы индукционного датчика подробности можно опустить.)

Очевидно, что индукционный датчик реагирует только на металлические элементы — неметаллические предметы не проводят электрический ток, поэтому на переменное магнитное поле никак не влияют. Помимо этого, поскольку магнитное поле быстро уменьшается с расстоянием, контролируемый объект должен располагаться в зоне чувствительности датчика.

В этом видеоролике принцип работы индукционных датчиков рассмотрен на более высоком уровне — для его понимания нужно знание физики:

Преимущества индукционных датчиков

Из описания устройства индукционных датчиков следует два их важных (в частности, для автомобилестроения) свойства во-первых, они в процессе эксплуатации не изнашиваются — в них просто нечему ломаться; во-вторых, появляется возможность сделать корпус датчика водонепроницаемым.

Использование для питания катушки переменного тока высокой частоты повышает помехозащищённость датчиков: они не реагируют на магнитные поля, возникающие при работе электромоторов и при протекании больших токов по проводам, проложенным вблизи датчиков.

Индукционные датчики отличаются от других типов сенсоров также другими преимуществами:
— высокой точностью;
— быстрым срабатыванием и безынерционностью;
— способностью работать в широком диапазоне температур;
— способностью работать во влажной и химически агрессивной среде;
— конструктивной гибкостью.

В работе индукционных датчиков очень мало систематических погрешностей. Датчики чувствительны к нестабильности питающего напряжения, но это компенсируется незначительным усложнением электрической схемы их подключения.

Что такое технология CIPOS и почему она важна

CIPOS® (от англ. Contactless Inductive Position Sensors) — технология компании Hella, на основе которой разработаны бесконтактные индукционные датчики положения, отвечающие требованиям электромагнитной совместимости.

Hella разработала технологию CIPOS в конце 1990-х годов. Сегодня она применяется в электронных датчиках педалей, рулевого механизма, датчиках выравнивания положения кузова, а также датчиках положения, установленных на валу двигателя. Эта же технология используется в приводном механизме турбонаддува, в дроссельных заслонках, реле радиаторной решетки и в электромагнитных клапанах.

Особенность бесконтактных датчиков CIPOS заключается не только в их высокой надёжности и безотказности. Помимо этого, они позволяют определять положение контролируемого элемента в абсолютных величинах. Благодаря этому датчик может сообщить в блок управления правильные данные сразу же после включения питания. В этом преимущество абсолютных датчиков перед инкрементальными датчиками, которым после включения нужна калибровка для определения «точки отсчёта». Цифровую обработку сигналов производят разработанные Hella чипы, входящие в конструкцию каждого датчика CIPOS.

LfdCV0KlwJip1aRl0gEQ2vUMs o 960

Поскольку усилия инженеров направлены на уменьшение массы и габаритов автомобилей с целью экономии энергоресурсов, компоновка агрегатов становится всё более плотной. В результате в моторном отсеке становится теснее — и жарче. Компактные и конструктивно гибкие датчики CIPOS способны работать в условиях вибрации, повышенной влажности и при экстремальных температурах от –40°C до +170°C и более. При этом их форма, габариты и диапазон измерений легко адаптируются для решения конкретных задач.

Технология CIPOS остается одним из ключевых компонентов автомобилей с режимом автономного вождения и электромобилей. Электромобили с использованием бесщёточных двигателей обладают внушительным КПД и, соответственно, генерируют большую выработку тока. В датчиках CIPOS, работающих индуктивно в диапазоне 3–4 МГц, не используются постоянные электромагниты, а следовательно, в силу естественных свойств они не подвержены действию магнитных полей, создаваемых током двигателя.

Где найти индукционные датчики в автомобиле

Составить общее представление о местах размещения индукционных датчиков в современном автомобиле вам поможет этот короткий видеоролик от Hella:

Если предпочитаете читать, а не смотреть, то вот вам примерный, но не полный, список узлов и агрегатов, где в современных автомобилях применяются индукционные датчики:
— датчики положения дроссельной заслонки и педали газа;
— датчики педали тормоза и сцепления;
— приводной механизм турбонаддува;
— датчик реле управления радиаторной решёткой (в просторечии «жабры»);
— различные электромагнитные клапаны.

В продуктовой линейке Hella имеется множество индукционных датчиков. Вот несколько примеров, которые помогут читателю составить более предметное представление о них.

H06WcH6RMbTHoWKSVZ9dd0Ar9oo 960

VSwvoXVM4ekXmIWTZGreSzJnflg 960

3Z2q26BnNzMyPrU 6AzcyJN 7Ls 960

pX8cm eW57rs59N 6TH4nmxX5LQ 960

w 1OMYTX54qLW1 8nKd 5JAs0Hc 960

750 миллионов и будет больше

Сочетание возможностей и надёжности индукционных датчиков обеспечивают им широкую область применения. Они являются примером по-настоящему массового изделия. За два десятилетия компания Hella произвела более 750 миллионов датчиков, и их выпуск растёт.

Индукционные датчики являются необходимым компонентом автоматики, широко применяются в электромобилях. Это закономерно, ведь в движение электромобиль приводится электромоторами, создающими неблагоприятную электромагнитную среду, в которой трудно работать сенсорам, устроенным по альтернативным принципам. В ближайшие пару десятилетий электромобилей будет выпускаться гораздо больше. Даже General Motors объявила об отказе от выпуска автомобилей с ДВС после 2035 года. А значит, и производство и применение индукционных датчиков будет всё шире и шире.

Познакомиться с ассортиментом датчиков Hella можно в каталоге по ссылке. Если же у вас появились вопросы, задавайте их в комментариях под этим постом — мы постараемся на них ответить.

Источник

Индуктивные датчики. Разновидности, принцип работы

Induktivny j datchik

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, оптические и другие датчики применяются очень широко.

Долго и постоянно имею с ними дело, и вот решил написать статью, поделиться знаниями.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) — понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Давления воздуха или масла нет – сигнал на контроллер или рвёт аварийную цепь. Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами.

Пока хватит, перейдём к теме статьи.

Принцип работы индуктивного датчика

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Pole induktivnogo datchika

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла – нет сигнала.

Shema induktivnogo datchika

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

Rabota induktivnogo datchika

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – ток при включении лампы значительно превышает номинальный.

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2 provodny j datchik

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:

• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 1805 раз./

• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 2354 раз./

• ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 1810 раз./

• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2336 раз./

• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 3683 раз./

Источник

Оцените статью
AvtoRazbor.top - все самое важное о вашем авто