Проектирование систем «человек-машина»
Автор работы: Пользователь скрыл имя, 13 Мая 2014 в 19:10, контрольная работа
Краткое описание
С развитием и усложнением техники возрастает значение человеческого фактора на производстве. Необходимость изучения этого фактора и учета его при разработке новой техники и технологических процессов, при организации производства и эксплуатации оборудования становится все более очевидной. От успешности решения этой задачи зависит эффективность и надежность эксплуатации создаваемой техники, функционирование технических устройств и деятельность человека, который пользуется этими устройствами в процессе труда, должны рассматриваться во взаимосвязи. Эта точка зрения привела к формированию понятия системы «человек — машина» (СЧМ).
Содержание
Вложенные файлы: 1 файл
готово проектирования СЧМ контрольна робота.doc
1. Анализ характеристик объекта управления: анализ статистических характеристик; анализ динамических характеристик; определение целей и задач системы.
2. Распределений функций между человеком и техникой: анализ возможностей человека и техники; определение критерия эффективности системы; определение ограничивающих условий; оптимизация критерия эффективности.
3. Распределение функций между операторами: выбор структуры группы; определение числа рабочих мест; определение задач на каждом рабочем месте; организация связи между операторами.
4. Проектирование деятельности конкретного оператора: определение структуры и алгоритма деятельности; определение требований к характеристикам человека (ПВК); определение требований к обученности; определение допустимых норм деятельности.
5. Проектирование технических средств деятельности операторов: синтез информационных моделей; конструирование органов управления; общая компоновка рабочего места.
Само системное проектирование предполагает (по сравнению с более простым проектированием), что:
Важным для проектирования различных социотехнических систем является учет индивидуальных характеристик оператора. Традиционно многие авторы используют схему составления индивидуальных характеристик оператора, предложенную Хопкиным (см. Леонова, Чернышева, 1995, с.55). Для оценки особенностей оператора в данной схеме выделяются 15 групп характеристик:
Проектирование систем «человек-машина»
Автор работы: Пользователь скрыл имя, 13 Мая 2014 в 19:10, контрольная работа
Краткое описание
С развитием и усложнением техники возрастает значение человеческого фактора на производстве. Необходимость изучения этого фактора и учета его при разработке новой техники и технологических процессов, при организации производства и эксплуатации оборудования становится все более очевидной. От успешности решения этой задачи зависит эффективность и надежность эксплуатации создаваемой техники, функционирование технических устройств и деятельность человека, который пользуется этими устройствами в процессе труда, должны рассматриваться во взаимосвязи. Эта точка зрения привела к формированию понятия системы «человек — машина» (СЧМ).
Содержание
Вложенные файлы: 1 файл
готово проектирования СЧМ контрольна робота.doc
Министерство образования и науки Украины
Одесская национальная академия пищевых технологий
Кафедра менеджмента и логистики
«Проектирование систем «человек-машина»
Выполнила Баранова Н.Н.
Проверил Удовица О.Ф.
Содержание
Введение
Средства отображения информации
Органы управления или средства ввода информации
Рабочее место оператора
Заключение
Список использованной литературы
Введение
С развитием и усложнением техники возрастает значение человеческого фактора на производстве. Необходимость изучения этого фактора и учета его при разработке новой техники и технологических процессов, при организации производства и эксплуатации оборудования становится все более очевидной. От успешности решения этой задачи зависит эффективность и надежность эксплуатации создаваемой техники, функционирование технических устройств и деятельность человека, который пользуется этими устройствами в процессе труда, должны рассматриваться во взаимосвязи. Эта точка зрения привела к формированию понятия системы «человек — машина» (СЧМ).
Под СЧМ понимается система, включающая человека-оператора (группу операторов) и машины, посредством которой осуществляется трудовая деятельность. Машиной в СЧМ называется совокупность технических средств, используемых человеком-оператором в процессе деятельности. СЧМ и является объектом инженерной психологии.
Система «человек — машина» представляет собой частный случай управляющих систем, в которых функционирование машины и деятельность человека связаны единым контуром регулирования. При организации взаимосвязи человека и машины в СЧМ основная роль принадлежит уже не столько анатомическим и физиологическим, сколько психологическим свойствам человека: восприятию, памяти, мышлению, вниманию и т. п. От психологических свойств человека во многом зависит его информационное взаимодействие с машиной.
Актуальность изучения проектирование системы «человек-машина» заключается в том, что с развитием техники растет потребность в проектирование системы «человек-машина».
Целью данной работы является исследование проектирования системы «человек-машина».
Для достижения цели необходимо решить следующие задачи:
1. Изучить средства отображения информации.
2. Исследовать органы управления или средства ввода информации.
3. Рассмотреть условия рабочего места оператора
4. Проанализировать литературу по вопросам инженерно-психологического проектирования.
1. Средства отображения информации
Выделяются основные подходы в совершенствовании СОИ (см. Основы инженерной психологии, 1986. С. 228-230):
Перспективные подходы в совершенствовании СОИ:
Таким образом, по моему мнению, перспективные подходы в совершенствовании средств отображения информации являются наиболее эффективными подходами, так как учитывают большее количество факторов влияющих на систему «человек-машина».
2. Органы управления или средства ввода информации
В основу типологии СВИ также могут быть положены разные критерии:
На основании специальных замеров и испытаний выделяются требования к отдельным типам органов управления, к совместному расположению индикаторов и органов управления, к системам ввода информации (к клавиатурам). Например, выделяются следующие принципы совместного расположения индикаторов и органов управления:
Выделяются также основные правила экономии рабочих движений, которые важно учитывать при проектировании разнообразных органов управления (см. Зинченко, Мунипов, 1979. С. 292):
Выявлена более оптимальная организация при выполнении различных рабочих движений. В частности, там, где больше требуются быстрые движения, рекомендуется учитывать следующие особенности
Там, где требуются более точные движения, рекомендуется учитывать, что:
3. Рабочее место оператора
Основные условия проектирования рабочего места оператора:
Оптимизация рабочего места оператора предполагает:
Выделяются также оптимальные рабочие позы оператора:
В качестве примера можно привести основные требования к рабочему сиденью оператора:
Основы проектирования и эксплуатации СЧМ
1. Средства отображения информации (СОИ). Сами СОИ различаются по следующим критериям:
o по форме сигнала: цифровые, буквенные, фигурные;
o по степени детализации: интегральные или детальные.
Выделяются основные подходы в совершенствовании СОИ (см. Основы инженерной психологии, 1986. С. 228-230):
o системно-лингвистический (построение оптимальных языков, диалоговых систем);
Перспективные подходы в совершенствовании СОИ:
o разработка многоканальных (многофункциональных) индикаторов;
o разработка полисенсорных (полимодальных) СОИ, т.е. воздействующих на различные органы чувств;
o по характеру движений человека различают: простые, повторяющиеся, высокоточные;
o по назначению выделяют: оперативные, периодические, эпизодические;
o по конструктивному исполнению: кнопки, тумблеры, педали.
На основании специальных замеров и испытаний выделяются требования к отдельным типам органов управления, к совместному расположению индикаторов и органов управления, к системам ввода информации (к клавиатурам). Например, выделяются следующие принципы совместного расположения индикаторов и органов управления:
o клавиши должны соответствовать характеру решаемых задач и соответствовать психофизиологическим характеристикам человека-оператора;
o компактность клавиатуры и ее умещаемость в зоне моторного контроля (даже в условиях постоянного усложнения СЧМ и увеличения алфавита вводимых символов). Выделяются также основные правила экономии рабочих движений, которые важно учитывать при проектировании разнообразных органов управления (см. Зинченко, Мунипов, 1979. С. 292):
§ простота движений, их плавность и закругленность; необходима минимизация самого количества движений;
§ движения должны соответствовать анатомии руки и находиться в зоне зрительного контроля;
§ рабочие движения должны быть ритмичными;
§ привычность движения для работника (следует учитывать ранее сформированные двигательные навыки);
§ необходимо по возможности использовать кинетическую (двигательную, инерционную) энергию самого объекта работы.
Выявлена более оптимальная организация при выполнении различных рабочих движений. В частности, там, где больше требуются быстрые движения, рекомендуется учитывать следующие особенности
o где требуется быстрая реакция, более предпочтительны движения к себе;
o в горизонтальной плоскости скорость рук быстрее, чем в вертикальной;
o вращательные движения быстрее, чем поступательные;
o плавные криволинейные движения рук быстрее, чем прямолинейные с внезапным изменением направления (чем резкие и угловатые);
Там, где требуются более точные движения, рекомендуется учитывать, что:
o при движении в вертикальной плоскости ошибок меньше, чем в горизонтальной.
o достаточное рабочее пространство для оператора;
o достаточные физические, зрительные и слуховые связи между работниками;
o оптимальное размещение рабочих мест в помещении, а также безопасные и удобные проходы;
o необходимое естественное и искусственное освещение;
o допустимый уровень акустического шума и вибрации;
o необходимые средства защиты от опасных и вредных производственных факторов (физических, химических, биологических и психофизиологических).
Оптимизация рабочего места оператора предполагает:
o выбор целесообразного рабочего положения (сидя, стоя);
o рациональное размещение индикаторов и органов управления;
o обеспечение оптимального обзора элементов рабочего места;
o соответствие рабочего места различным характеристикам работника;
o соответствие информационных потоков возможностям человека по их приему и переработке;
o обеспечение условий для кратковременного отдыха в процессе работы.
Выделяются также оптимальные рабочие позы оператора:
o положение «стоя» более естественно для человека (но при длительной работе стоя человек утомляется быстрее), поэтому необходимо предусмотреть возможность изменения рабочей позы;
o нормальная поза в положении «стоя», когда не требуется наклоняться вперед более, чем на 15 о ;
o наклоны назад и в сторону (при работе стоя) нежелательны;
o положение «сидя» имеет много преимуществ (разгружаются многие системы органов), но длительное сидение тоже нежелательно, из-за нагрузки на таз, и поэтому также лучше предусмотреть смену поз.
В качестве примера можно привести основные требования к рабочему сиденью оператора:
o сиденье оператора должно обеспечивать позу, способствующую уменьшению статичной работы мышц;
o сиденье должно обеспечивать возможность для изменения рабочей позы;
o оно не должно затруднять деятельность различных систем организма (дыхательной системы, сердечно-сосудистой, пищеварительной) и не вызывать болезненных ощущений;
o глубина сиденья не должна быть чрезмерно большой;
o должно быть обеспечено свободное перемещение сиденья относительно рабочих поверхностей (в том числе желательно обеспечить вращение сиденья);
o важно предусмотреть возможность регулирования высоты, угла наклона спинки, высоты спинки;
o важно учесть требования безопасности (общие и частные, в зависимости от конкретного места работы оператора);
o желательно использовать на сидениях полумягкую обивку, но не скользкую, неэлектризирующуюся, воздухопроницаемую, влагоотталкивающую (кроме случаев с особыми условиями производства, где сиденья могут быть только деревянными) и т.п.
· Само системное проектирование предполагает (по сравнению с более простым проектированием), что:
o разработка простых систем («технология операциональной разработки») осуществляется через постепенное увеличение функций и проверки эффективности на основе опыта;
o основные этапы процесса разработки и проектирования сложных систем: исследование; анализ и планирование; техническое проектирование; испытания; введение в эксплуатацию.
· Важным для проектирования различных социотехнических систем является учет индивидуальных характеристик оператора. Традиционно многие авторы используют схему составления индивидуальных характеристик оператора, предложенную Хопкиным (см. Леонова, Чернышева, 1995, с.55). Для оценки особенностей оператора в данной схеме выделяются 15 групп характеристик:
o Биографические данные: возраст, пол, национальность, опыт работы, выполняемая ранее работа.
o Физические и физиологические характеристики: здоровье, физическая сила, выносливость, стрессоустойчивость.
o Требования к сенсорным системам (включая «интермодальное взаимодействие»).
o Требования к когнитивным процессам: скорость, точность, способность к опознаванию в различных сенсорных модальностях.
o Требования к обработке информации.
o Требования к психомоторике: мышечная координация, ловкость, манипулятивные способности, реакция на стимул.
o Требования к семантическим системам: умение говорить и понимать речь, беглость речи, ясность выражения мысли.
o Знания и умения: фундаментальные знания, практические знания, обучаемость, способность применять знания, мастерство в работе, практические суждения.
o Требования к образованию: базовое и квалификационное образование, дополнительная квалификация, последнее достижение, посещение курсов переподготовки, планы на будущее в области образования.
o Требования к познавательным и мыслительным процессам: общая культура; вербальные, числовые, пространственные, механические способности и склонности; умение учиться на ошибках, способность не обращать внимания на обиды.
o Требования к качеству исполнения: скорость и точность ассоциаций; перцептивные, интеллектуальные, психомоторные функции; целеполагание.
o Индивидуальные требования: основные черты личности, специфические черты личности, индивидуальный профиль, внешний вид и привычки.
o Социальные требования: способность работать в команде, такт, готовность к лидерству, мораль, отношение к руководству и подчиненным.
o Мотивация и интересы: поведение, потребность в сложных задачах, готовность прилагать дополнительные усилия в работе.
o Эмоциональные требования: эмоциональная стабильность, настойчивость, устойчивость к смене условий труда, реакция на стресс и скуку.
o при эргономическом проектировании «производится тщательный анализ не только прототипного устройства или программного комплекса, но и прототипной деятельности пользователя»;
o перед тем, как писать программу, имеет смысл сопоставить режимы, в которых выполняет работу специалист, и их усовершенствование в ходе исторического развития профессии.
· Традиционно выделяются следующие основные направления эксплуатации СЧМ (см. Основы…, 1986. С. 196-275):
o Профессиональная подготовка и постоянная переподготовка операторов (профотбор, обучение, тренировка), а также формирование бригад (команд) операторов;
o Организация группового взаимодействия (взаимодействие операторов в группе; методы изучения групповой деятельности; принципы формирования рабочей группы);
o Организация труда операторов: разработка режима труда и отдыха, контроль за состоянием операторов, охрана и психогигиена труда, оценка результатов труда, использование способов поощрения и порицания. Ниже более подробно будут рассмотрены каждое из этих направлений.
· Отбор операторов в рабочую группу (бригаду) осуществляется на основе выявления ПВК, подбора и использования соответствующих психодиагностических методик, а также с помощью специальных процедур комплектования групп операторов, занятых сложным и ответственным трудом, которые предполагают следующую работу (подэтапы):
o сначала основное внимание уделяется индивидуально-психологическим особенностям претендентов (через тестирование, наблюдение и собеседование);
o затем с помощью специально организованных процедур (или в естественной обстановке) выявляются спонтанные контакты внутри группы;
o особое место отводится изучению поведения группы в экстремальных условиях, нередко специально созданных (это позволяет проявиться лидерам, ведомым, «сотрудничающим», а также отверженным и тем, кто явно не «вписывается» в совместную групповую работу);
o на заключительных этапах отбора проводится интегративная оценка группы (насколько она состоялась как работоспособный коллектив);
o далее продолжается формирование группы уже в процессе группового обучения.
· 3. Организация труда операторов на конкретных трудовых постах предполагает:
o разработку режима труда и отдыха;
o контроль за состоянием операторов;
o охрану и психогигиену труда;
o оценку результатов труда;
o использование способов поощрения и порицания и т.п.
Основные концепции анализа и проектирования систем «человек-машина»
В настоящее время в инженерной психологии, а также в смежных с нею научных дисциплинах и направлениях (эргономика, психология труда и управления, теория эргатических систем, теория надежности и эффективности СЧМ и др.) разработан целый ряд концепций анализа, описания и проектирования систем «человек—машина». Эти концепции различаются используемым математическим аппаратом, составом необходимых исходных данных, различными взглядами на роль и место человека в СЧМ. Такое положение является достаточно точным отражением современного уровня развития инженерной психологии, поскольку в зависимости от конкретных условий специалист по инженерной психологии (конструктор, организатор производства, специалист по эксплуатации) может выбрать и использовать ту или иную из существующих концепций. Поэтому представляется целесообразным рассмотреть наиболее конструктивные из возможных концепций (теорий, подходов). Все они условно делятся на две большие группы: психологические и кибернетические (рис. 3.3).
Наиболее общей из них является концепция, основанная на использовании деятельностного подхода [55, 56]. С ее позиций категория деятельности выступает как начало, содержание и завершение процессов анализа, организации, проектирования и оценки СЧМ. При этом категория деятельности выступает в качестве предмета:
■ объективного научного изучения;
■ управления, т. е. того, что подлежит организации в сложную систему функционирования и оценки;
■ проектирования, основной задачей которого является выявление способов и условий оптимальной реализации определенных видов деятельности;
■ многоплановой оценки, осуществляемой в соответствии с различными критериями (надежность, быстродействие, удовлетворенность трудом, комфортность и т. п.).
Рис. 3.3. Основные концепции анализа и проектирования СЧМ.
В рамках этой концепции разработан микроструктурный подход (от греч. mikros — малый и лат. structure — строение) к анализу деятельности. Сущность микроструктурного подхода состоит в выделении компонентов (единиц анализа), сохраняющих свойства целого, и установлении между ними типов взаимоотношения или координации. Набор (алфавит) компонентов должен быть достаточно широк для того, чтобы охватить процесс в целом; каждый из компонентов должен обладать не только качественной, но и количественной определенностью.
Микроструктурный подход оперирует понятиями операции, функционального блока, фазы процесса, кванта восприятия или действия. Каждый из компонентов отличается по ряду параметров: место в структуре деятельности, информационная емкость, время выполнения, тип преобразования информации, возможные связи с другими компонентами и средой.
Наиболее распространенный прием микроструктурного подхода состоит в том, что время выполнения работы делится на ряд интервалов и предполагается, что в каждом из них выполняются те или иные преобразования входной информации, осуществляемые определенными функциональными блоками. Микроструктурный подход является возможным прототипом проектирования отдельных функций операторской деятельности [55, 215].
Одной из первых психологических концепций была предложенная в 1967 году Б.Ф. Ломовым концепция проектирования деятельности [цит. по 92]. Суть ее состоит в том, что проект деятельности оператора (и вообще любого работника) должен выступать как основа решения всех остальных задач проектирования СЧМ. Эта концепция базируется на рассмотренных в первой главе методологических принципах (гуманизации труда, активного оператора, комплексности и др.).
Целый ряд задач анализа, описания и проектирования СЧМ может быть решен на основе использования структурно-психологической концепции [17, 143]. Основной смысл ее состоит в соотнесении структуры технических средств деятельности оператора и психологических факторов сложности (ПФС) выполнения им своих функций, в частности сложности решения оперативных задач. С позиций данной концепции проектирование технических средств рассматривается как процесс анализа и материализации априорных стратегий решения задач с целью оптимизации ПФС. Их оптимальный уровень достигается путем многоуровневой взаимной адаптации людей и технических средств. Оптимальными значениями ПФС считаются те, которые обеспечивают достижение цели (решение задачи) при минимальном значении внешнего критерия сложности (времени решения задачи, числа ошибок, показателей психофизической напряженности и др.).
Оптимизация ПФС достигается путем создания системы адаптивного информационного взаимодействия между оператором и ЭВМ, работающей по принципу гибридного интеллекта. Он достигается путем разумного сочетания естественного интеллекта человека и возможностей современных ЭВМ. При этом человек и ЭВМ рассматриваются как равноправные партнеры по информационному взаимодействию. Оптимизации ПФС способствует также применение трансформационной теории обучения. Согласно ей процесс обучения не носит традиционно используемый характер; на кривой обучения имеются плато (пологие участки), соответствующие переходуна новый, более высокий уровень овладения деятельности. Последнее одновременно способствует и достижению более оптимальных значений ПФС.
Анализ взаимодействия априорных и реальных стратегий поведения оператора и соответствующих им уровней ПФС позволяет расширить рамки инженерно-психологического проектирования — не только распространить его на предварительный выбор характеристик системы, но и сделать проектирование непрерывным, последовательно решающим задачу оптимизации СЧМ и после реализации предварительного проекта, т. е. в ходе эксплуатации системы [17].
При разработке автоматизированных систем организационного типа (АСУП, ОАСУ и т. п.) весьма плодотворным оказывается использование концепции психологического обеспечения (ПО) АСУ [141]. Под ним понимается планирование, разработка, организация и реализация комплекса мероприятий по учету психологических факторов на всех этапах создания, внедрения и эксплуатации АСУ. Согласно этой концепции, любая АСУ рассматривается как сложная социотехническая система, которая не может эффективно функционировать, если она создается и эксплуатируется без учета психологического фактора. Его учет должен осуществляться на всех этапах проектирования, внедрения и эксплуатации АСУ. Создание АСУ должно начинаться с проектирования оптимальной (рациональной) человеческой деятельности. Важнейшим фактором, обеспечивающим эффективность функционирования разрабатываемой системы, является подготовка персонала АСУ. Она базируется на анализе, проектировании и синтезе (формировании) деятельности. Анализ деятельности осуществляется на этапе предпроектного обследования, а его результатом являются рекомендации на проектирование или совершенствование деятельности персонала АСУ. Проектирование деятельности осуществляется на этапах технического и рабочего проектирования, а его результатом являются должностные инструкции. Они должны разрабатываться с учетом обеспечения быстрейшей адаптации работника к эффективной деятельности в условиях АСУ. Синтез деятельности включает в себя профессиональный отбор, обучение, выработку индивидуальных и коллективных умений и навыков, а также обеспечение психологической совместимости всего персонала АСУ. Синтез деятельности должен начинаться на этапе технического проектирования и завершаться на этапе внедрения во взаимодействии с проектированием технической части АСУ. Его конечной целью является обеспечение фактической эффективной деятельности всего персонала АСУ.
При создании автоматизированных систем управления технологическими процессами (АСУТП), деятельность оператора в которых носит сложный мыслительный характер, может быть использована концепция идеализированных структур деятельности [26]. Эта концепция базируется на данных о формализуемых человеком способах организации процесса контроля и управления объектом на разных уровнях обучения и в разных конкретных условиях. На основе концепции разработаны методы инженерно-психологического анализа и проектирования деятельности оператора АСУТП, базирующиеся на исходных данных о психологической структуре деятельности оператора (включающей сложные виды мыслительных задач), позволяющие свести к минимуму число операций (шагов) решения задач проектирования, ложность исходных данных на разных стадиях создания СЧМ.
Для анализа, описания и проектирования следящих систем может быть использована концепция инженерно-психологического проектирования полуавтоматических систем управления, использующих принцип слежения [173, 201]. Практическая реализация концепции связана с решением ряда проблем:
■ создание единого подхода к описанию функционирования технической части системы и деятельности оператора;
■ учет индивидуальных психофизиологических характеристик деятельности, различия между которыми носят, как правило, случайный характер;
■ учет динамики характеристик деятельности в процессе обучения;
■ отбор операторов, обладающих качествами, необходимыми для работы на конкретном объекте управления; из этого следует, что вопросы обучения и профессионального отбора выступают как этапы системного подхода к проектированию деятельности.
Реализация концепции потребовала уточнения понятия «передаточная функция оператора». Оказалось, что спектр ответных действий оператора содержит кроме требуемого сигнала и спектр дополнительных (малых) движений, необходимых оператору для познания и контроля процесса управления и названных дельтаремнантой. Малые движения являются одним из показателей психологических особенностей работы оператора в режиме слежения. Отсутствие формализованного описания свойств этих движений в большинстве математических моделей деятельности и обуславливает их неадекватность. Включение же их в математические модели позволяет учитывать психологические особенности деятельности человека в следящих системах.
В результате учета малых движений стало возможным аналитически оценивать долю погрешности, вносимую в ошибку выходного сигнала системы, как от функционирования человека-оператора, так и от разброса параметров любого из элементов технической части системы. Это дает возможность производить синтез системы по заданным требованиям. При этом учитываются и экономические показатели, что позволяет создавать наиболее экономичные системы «человек—машина».
Рассмотренные концепции отличает ярко выраженный их, если так можно выразиться, психологический характер. Они базируются на знании и учете психологических характеристик и свойств человека, а основу этих концепций составляет прежде всего проектирование деятельности оператора в системе «человек—машина». Помимо них существует еще ряд концепций, в основе которых лежит кибернетический подход к анализу и проектированию СЧМ.
Одна из таких концепций носит название организмической. Она разработана в рамках теории эргатических систем [53, 131]. В соответствии с организмической концепцией основой оптимальной кооперации человека и машины должны служить принципы организации живого, т. е. организма как феномена целесообразного живого в природе. Концепция основывается на двух основных положениях: 1) организм представляет собой соответствующим образом организованную совокупность функциональных систем (понятие о них дается в главе IV); 2) основные закономерности организации и функционирования каждой системы и всего организма и СЧМ в целом — одни и те же. Основное смысловое содержание организмического постулата формулируется следующим образом: создание оптимальных СЧМ в функциональном смысле эквивалентно оптимальной «достройке» организма оператора машинами как орудиями труда.
В рамках концепции предлагается определенная система принципов поведения биосистем. К их числу относятся принципы: активности, гомеостаза, автономности, иерархичности, доминанты, целостности, эволюции. Подробно они описаны в [53].
Сущность организмической концепции сводится к синтезу эргамата — системы, состоящей из человека и машины и выполняющей определенную работу действиями человека внутри системы. Поведение эргамата описывается системой дифференциальных уравнений. Задача синтеза эргамата заключается в определении числа и состава входящих в систему элементов (включая и человека) и их функциональных обязанностей.
Для решения задачи определяются обобщенные рабочие характеристики (ОРХ) оператора. Окончательный вариант структуры эргамата выбирают оптимизацией общецелевой системной функции при выполнении ограничений, накладываемых на соответствующие временные, точностные и надежностные ОРХ. Концепция нашла применение для расчета и оптимизации непрерывных систем ручного управления, в частности транспортных систем.
К кибернетическому направлению можно отнести и концепцию обеспечения качества функционирования (ОКФ) эргатических систем [102, 214]. Задача обеспечения требуемого уровня качества заключается в оценке (с помощью процедуры контроля) и устранении (путем проведения профилактического обслуживания) причин и условий, которые его снижают (не обеспечивают). При этом возникает задача по определению, когда и какие мероприятия следует проводить, чтобы получать максимально возможный эффект от применения СЧМ по своему назначению в течение заданного времени ее функционирования.
Последовательность мероприятий по ОКФ эргатических систем следующая. В начальный момент качество функционирования системы соответствует требуемому уровню, т. е. технические звенья и операторы находятся в работоспособном состоянии и готовы к выполнению задания. Через некоторое время необходимо провести контроль параметров функционирования системы (как техники, так и операторов). Если к этому времени система функционирует безотказно, то следует проводить плановый контроль. Если же возникли отказы, то следует осуществлять профилактические воздействия, которые должны полностью восстановить требуемый уровень качества. К таким воздействиям относятся: ремонт или замена отказавших технических звеньев, восстановление работоспособности операторов, исправление ошибок их деятельности, профессиональный отбор и обучение персонала и т. п.
Рассмотренный цикл повторяется заново до тех пор, пока время функционирования системы не достигнет заданного значения.
К этому же направлению относится и функционально-структурная теория эргатических систем. Основу ее составляет обобщенный структурный метод (ОСМ) оценки эффективности, качества и надежности СЧМ [35, 137]. Сущность метода заключается в том, что любую деятельность можно расчленить на мельчайшие элементы — типовые функциональные единицы (ТФЕ). На основании ТФЕ разработаны типовые функциональные структуры (ТФС), которые служат уже не для описания отдельных действий, а для описания фрагментов деятельности, присущих самым разнообразным системам. С помощью ТФС может быть описана деятельность в целом. В рамках метода получены математические модели, позволяющие оценить показатели качества функционирования эргатической системы и определить ту ее структуру, для которой эти показатели будут наилучшими. Дальнейшее развитие метода состоит в том, что элементы планирования и принятия решений моделируются с помощью метода ситуационного управления, а исполнение — с помощью ОСМ.
Такой подход носит название комплексного обобщенного структурного метода (КОСМ), обеспечивающего представление функционирования эргатических систем в виде функционально-семантических сетей. Однако этот подход находится еще в стадии разработки.
Одной из наиболее работоспособных является системная концепция анализа и оценки надежности СЧМ [185, 186]. Она базируется на восьми частных концепциях: аппаратурной безотказности применяемых технических средств, полной аппаратурной безотказности, восстанавливающего оператора, подготавливающего оператора, управляющего оператора, дежурного оператора, биологически надежного оператора. Целесообразность использования конкретной концепции определяется видом решаемой задачи и необходимостью учета тех или иных свойств оператора и техники и режимов работы СЧМ. При этом каждая последующая концепция учитывает более полный набор свойств и дает более полные оценки надежности СЧМ. Так, при оценке только аппаратурной безотказности достаточно использовать первые две концепции (влияние оператора на надежность СЧМ при этом не учитывается); для обеспечения ремонтопригодности оборудования необходимо использовать уже третью концепцию и т. д. Более высокие концепции обеспечивают расчет надежности СЧМ в целом, учитывая и готовность операторов, и подверженность их ошибкам и биологическим отказам организма. Для каждой концепции разработаны формулы для определения надежности СЧМ. Сложность деятельности (учет различных факторов) учитывается с помощью поправочных коэффициентов, степень детализации которых зависит от вида учитываемых факторов сложности.
Совместно с разработанной программой обеспечения эргономического качества СЧМ и методикой расчета времени и вероятности безошибочного выполнения алгоритма оператором (способ статистического эталона) данный подход может быть применен для анализа, описания и проектирования довольно широкого круга систем «человек—машина».
В рамках кибернетического направления разработана и успешно применяется на практике и системно-лингвистическая концепция [196]. Сущность концепции состоит в том, что на ранних этапах проектирования используется классификация систем отображения информации по внешним характеристикам, языкам обмена и методам технической реализации. На последующих этапах применяются специальные методы и языки описания действий человека. Далее проводятся психологические эксперименты, в которых выявляются ход и особенности решения человеком критических задач и наконец строится трансформационная модель принятия решений, в составе которой используются формализмы лингвистической семантики. Посредством модели сравниваются различные варианты построения систем отображения информации, а также конструкции языков обмена и процедуры диалога «человек—ЭВМ».
Концепция нашла применение в трех основных областях: для построения щитов управления сложными автоматизированными технологическими процессами; для создания учебно-тренировочных центров и для проектирования диалога «человек—ЭВМ». На ее основе возник алгоритмический подход в подготовке операторов: основным стержнем подготовки является овладение оператором приемами и навыками принятия оперативных решений. При этом знания должны способствовать решениям, носить направленно оперативный характер, навыки взаимодействия с приборами и органами управления — дополнять, а не затемнять содержание оперативных решений. Разработан ряд форм подготовки операторов, в частности, карты наблюдений, деревья оценки ситуаций, планы действий, игровые сценарии тренировок [197].
На основе концепции проведено инженерно-психологическое проектирование щитов управления для ряда тепловых и атомных энергоблоков, учебно-тренировочных центров, различного рода диалоговых систем — для научных экспериментов, автоматизации проектирования и обучения.
Определенный интерес представляет также разработанная Г.В. Дружининым статистическая теория процессов выполнения работы [42]. Она используется для априорной оценки времени выполнения работы в условиях действия на работников различного рода случайных факторов. В инженерной психологии данная теория применяется для описания процессов переработки информации оператором и определения времени τоп решения им той или иной задачи управления при следующих предположениях:
■ средняя скорость переработки информации V в пределах одной задачи постоянна, но в силу случайных факторов может меняться от задачи к задаче;
■ объем информации, перерабатываемой при решении каждой задачи постоянен и равен h;
■ величина V распределена по нормальному закону с параметрами mv и σv.
Зависимость количества перерабатываемой информации от времени выражается формулой H(t)=Vt. Эта зависимость является веерной случайной функции, ее графическое изображение приведено на рис. 3.4. Для таких функций закон распределения времени топ, необходимого для достижения величиной H(t) заданного значения h представляет собой альфа-распределение. Оно характеризуется двумя параметрами: а и р. Первый из них является безразмерной величиной и представляет собой среднюю относительную скорость переработки информации, параметр Р имеет размерность времени и называется относительным объемом работы. При а>3 что характерно для большинства видов операторской деятельности, параметры альфа-распределения можно оценить по формулам
где τоп στ, — соответственно среднее значение и среднеквадратическое отклонение времени решения задачи оператором.
Использование этих соотношений позволяет получить функцию плотности распределения времени хоп. В инженерной психологии статистическая теория выполнения работы используется для описания процессов переработки информации при сделанных выше допущениях в условиях действия ряда случайных факторов. Наибольшее применение эта теория получила для определения времени топ, а также определения надежности оператора, работающего в условиях временных ограничений.
Рис. 3.4. Веерная случайная функция времени.
В рамках кибернетического направления В.Г. Денисовым разработана концепция совместимости оператора, машин и среды в рамках единой системы «человек—машина» [38]. Согласно концепции основным системообразующим фактором в СЧМ является совместимость составляющих систему компонентов. Рассматриваются следующие виды совместимости:
■ информационная, предполагающая соответствие циркулирующих в системе информационных потоков возможностям отдельных ее компонентов по приему и переработке этих потоков;
■ энергетическая, предусматривающая совместимость отдельных компонентов СЧМ с точки зрения производимых усилий;
■ пространственно-антропометрическая, определяемая соответствием компонентов системы пространственным характеристикам (размеры, расположение в пространстве, досягаемость и т. п.);
■ технико-эстетическая, заключающаяся в соответствии внешнего вида и удобства работы с изделием эстетическим вкусам человека;
■ биофизическая, предусматривающая совместимость компонентов системы с точки зрения осуществления управляющих движений.
В дальнейшем на основе этой концепции Е.М. Хохловым была выдвинута в качестве центральной проблемы категория «взаимодействие»; с помощью которой решалась задача учета большого количества факторов, влияющих на деятельность оператора [189]. При этом автор отрицательно относится к идее выделения психологических факторов сложности [17], считая ее неплодотворной. На основе проблемы взаимодействия разработан комплексный операционный анализ эксплуатационных процессов, основу которого составляет кольцевой (спиральный) анализ отрицательных процессов в СЧМ. К отрицательным процессам относятся потоки отказов и дефектов техники, поток ошибок операторов, поток эксплуатационных замечаний. Выявленные такие потоки в ряде СЧМ (на воздушном транспорте, в прессово-кузнечном оборудовании и др.) были обработаны методом логического центрирования, на основании чего построены статистические ряды динамики, столбиковые диаграммы, определены основные статистические индексы [63]. Полученные данные используются при модернизации существующих и проектировании вновь создаваемых СЧМ аналогичного назначения.
Рассмотренные концепции, несмотря на их различия между собой, нашли в той или иной степени применение при решении ряда практических задач. Их применение дало и существенный экономический эффект [18, 35, 42, 53, 102, 137, 169, 189, 197]. Однако в них вне поля зрения остались особенности функционирования систем «человек—машина», деятельность оператора в которых протекает по схеме массового обслуживания. Этот класс СЧМ условно называется автоматизированными системами массового обслуживания (АСМО). Их особенности рассматриваются в специальной концепции анализа и проектирования АСМО [45, 167].
Эта концепция, не отвергая и не противореча рассмотренным выше концепциям, дополняет их учетом особенностей деятельности оператора в условиях потока сигналов, что является отличительной чертой систем массового обслуживания. В основе концепции лежит положение, выдвинутое Ю.М. Забродиным о том, что основная проблема в проектировании деятельности оператора состоит в оценке возможностей ее выполнения [142]. Тем самым подчеркивается, что основные проектные решения принимаются в результате инженерно-психологической оценки. Учитывая специфику деятельности оператора в АСМО (работа в условиях потока сигналов) основное внимание в концепции уделяется динамической оценке показателей деятельности и состояния оператора.
С учетом сказанного структурная схема проектирования деятельности оператора имеет вид, показанный на рис. 3.5. Основу проекта составляет анализ деятельности в условиях потока сигналов (особенности такой деятельности рассмотрены в следующей главе). На основании анализа проводится инженерно-психологическая оценка деятельности, по результатам которой и принимаются основные проектные решения. Оценка является важнейшим и завершающим этапом каждой из стадий проектирования системы.
Инженерно-психологическая оценка проводится по четырем основным направлениям (рис. 3.5). Она включает в себя как оценку достигнутых результатов, так и оценку тех затрат, которыми эти результаты достигаются.
Рис. 3.5. Структурная схема анализа и проектирования АСМО.
Оценка результатов состоит в определении соответствия техники возможностям человека по обработке потока сигналов и определении основных показателей качества деятельности (надежность, быстродействие) с последующей оценкой их влияния на соответствующие показатели всей системы.
Помимо оценки достигнутых результатов необходимо провести и оценку произведенных при этом затрат. Они включают в себя прежде всего экономические затраты, это направление носит название экономической оценки СЧМ. Однако для СЧМ понятие затрат имеет еще один смысл. В данном случае речь идет о затратах человеческого организма, об определении психофизиологической «цены» деятельности. Эта задача решается путем контроля и диагностики функционального состояния оператора. Наибольшее значение при этом имеет применение бесконтактных методов.
Основным методом проведения оценки является математическое моделирование деятельности оператора. Разрабатываемые для этой цели модели относятся к классу моделей обслуживания.
Рассмотренные концепции носят довольно общий, системный характер и применяются для решения задач анализа и проектирования деятельности оператора в целом. Помимо них разработан и ряд частных концепций, применяемых для решения конкретных, отдельных задач. К ним относятся: концепция включения [81], концепция информационного поиска [57], алгоритмического описания деятельности оператора [52], саморегуляции [77] и самоконтроля деятельности [121, 145], психологической защиты [34, 145] и целый ряд других. Более подробно эти концепции рассмотрены при изучении соответствующих вопросов книги.